Extension Fullness of the Categories of Gelfand–Zeitlin and Whittaker Modules
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the categories of Gelfand–Zeitlin modules of $\mathfrak{g}=\mathfrak{gl}_n$ and Whittaker modules associated with a semi-simple complex finite-dimensional algebra $\mathfrak{g}$ are extension full in the category of all $\mathfrak{g}$-modules. This is used to estimate and in some cases determine the global dimension of blocks of the categories of Gelfand–Zeitlin and Whittaker modules.
Keywords: extension fullness; Gelfand–Zeitlin modules; Whittaker modules; Yoneda extensions; homological dimension.
@article{SIGMA_2015_11_a15,
     author = {Kevin Coulembier and Volodymyr Mazorchuk},
     title = {Extension {Fullness} of the {Categories} of {Gelfand{\textendash}Zeitlin} and {Whittaker} {Modules}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a15/}
}
TY  - JOUR
AU  - Kevin Coulembier
AU  - Volodymyr Mazorchuk
TI  - Extension Fullness of the Categories of Gelfand–Zeitlin and Whittaker Modules
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a15/
LA  - en
ID  - SIGMA_2015_11_a15
ER  - 
%0 Journal Article
%A Kevin Coulembier
%A Volodymyr Mazorchuk
%T Extension Fullness of the Categories of Gelfand–Zeitlin and Whittaker Modules
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a15/
%G en
%F SIGMA_2015_11_a15
Kevin Coulembier; Volodymyr Mazorchuk. Extension Fullness of the Categories of Gelfand–Zeitlin and Whittaker Modules. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a15/

[1] Baer R., “Abelian groups that are direct summands of every containing abelian group”, Bull. Amer. Math. Soc., 46 (1940), 800–806 | DOI

[2] Bagci I., Christodoulopoulou K., Wiesner E., “Whittaker categories and Whittaker modules for Lie superalgebras”, Comm. Algebra, 42 (2014), 4932–4947, arXiv: 1201.5350 | DOI

[3] Batra P., Mazorchuk V., “Blocks and modules for Whittaker pairs”, J. Pure Appl. Algebra, 215 (2011), 1552–1568, arXiv: 0910.3540 | DOI

[4] Benkart G., Ondrus M., “Whittaker modules for generalized Weyl algebras”, Represent. Theory, 13 (2009), 141–164, arXiv: 0803.3570 | DOI

[5] Brüstle Th., König S., Mazorchuk V., “The coinvariant algebra and representation types of blocks of category $\mathcal{O}$”, Bull. London Math. Soc., 33 (2001), 669–681 | DOI

[6] Christodoulopoulou K., “Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras”, J. Algebra, 320 (2008), 2871–2890 | DOI

[7] Coulembier K., Mazorchuk V., Some homological properties of the category $\mathcal{O}$, III, arXiv: 1404.3401

[8] Dahlberg R. P., “Injective hulls of Lie modules”, J. Algebra, 87 (1984), 458–471 | DOI

[9] Dixmier J., Enveloping algebras, Graduate Studies in Mathematics, 11, Amer. Math. Soc., Providence, RI, 1996 | DOI

[10] Donkin S., “On the Hopf algebra dual of an enveloping algebra”, Math. Proc. Cambridge Philos. Soc., 91 (1982), 215–224 | DOI

[11] Drozd Yu. A., “Representations of Lie algebras $\mathfrak{sl}(2)$”, Vīsnik Kiïv. Unīv. Ser. Mat. Mekh., 1983, no. 25, 70–77

[12] Drozd Yu. A., Futorny V. M., Ovsienko S. A., “Harish-Chandra subalgebras and Gel'fand–Zetlin modules”, Finite-Dimensional Algebras and Related Topics (Ottawa, ON, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 424, Kluwer Acad. Publ., Dordrecht, 1994, 79–93 | DOI

[13] Drozd Yu. A., Ovsienko S. A., Futorny V. M., “Irreducible weighted $\mathrm{sl}(3)$-modules”, Funct. Anal. Appl., 23 (1989), 217–218 | DOI

[14] Drozd Yu. A., Ovsienko S. A., Futorny V. M., “On Gel'fand–Zetlin modules”, Rend. Circ. Mat. Palermo (2) Suppl., 1991, no. 26, 143–147

[15] Eckmann B., Schopf A., “Über injektive Moduln”, Arch. Math., 4 (1953), 75–78 | DOI

[16] Feldvoss J., “Injective modules and prime ideals of universal enveloping algebras”, Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., 249, Chapman Hall/CRC, Boca Raton, FL, 2006, 107–119, arXiv: math.RT/0504539 | DOI

[17] Fuser A., Autour de la conjecture d'Alexandru, Ph.D. Thesis, Université de Nancy, Nancy, 1997

[18] Futorny V., Grantcharov D., Ramirez L. E., Singular Gelfand–Tsetlin modules of $\mathfrak{gl}(n)$, arXiv: 1409.0550

[19] Futorny V., Nakano D. K., Pollack R. D., “Representation type of the blocks of category $\mathcal{O}$”, Q. J. Math., 52 (2001), 285–305 | DOI

[20] Futorny V., Ovsienko S., “Kostant's theorem for special filtered algebras”, Bull. London Math. Soc., 37 (2005), 187–199, arXiv: math.RA/0303372 | DOI

[21] Futorny V., Ovsienko S., “Fibers of characters in Gelfand–Tsetlin categories”, Trans. Amer. Math. Soc., 366 (2014), 4173–4208, arXiv: math.RT/0610071 | DOI

[22] Gaillard P.-Y., Introduction to the Alexandru conjecture, arXiv: math.RT/0003069

[23] Gel'fand I. M., Tsetlin M. L., “Finite-dimensional representations of the group of unimodular matrices”, Dokl. Akad. Nauk USSR, 71 (1950), 825–828

[24] Guo X., Liu X., “Whittaker modules over generalized Virasoro algebras”, Comm. Algebra, 39 (2011), 3222–3231 | DOI

[25] Hermann R., Monoidal categories and the Gerstenhaber bracket in Hochschild cohomology, Ph. D. Thesis, Bielefeld University, Germany, 2013, arXiv: 1403.3597

[26] Khomenko O., “Some applications of Gelfand–Zetlin modules”, Representations of algebras and related topics, Fields Inst. Commun., 45, Amer. Math. Soc., Providence, RI, 2005, 205–213

[27] Khomenko O., Mazorchuk V., “Structure of modules induced from simple modules with minimal annihilator”, Canad. J. Math., 56 (2004), 293–309 | DOI

[28] König S., Mazorchuk V., “An equivalence of two categories of $\mathrm{sl}(n,\mathbb{C})$-modules”, Algebr. Represent. Theory, 5 (2002), 319–329 | DOI

[29] Kostant B., “On Whittaker vectors and representation theory”, Invent. Math., 48 (1978), 101–184 | DOI

[30] Krause H., The spectrum of a module category, Mem. Amer. Math. Soc., 149, 2001, x+125 pp. | DOI

[31] Mac Lane S., Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995

[32] Matlis E., “Injective modules over Noetherian rings”, Pacific J. Math., 8 (1958), 511–528 | DOI

[33] Mazorchuk V., “Tableaux realization of generalized Verma modules”, Canad. J. Math., 50 (1998), 816–828 | DOI

[34] Mazorchuk V., “On Gelfand–Zetlin modules over orthogonal Lie algebras”, Algebra Colloq., 8 (2001), 345–360

[35] Mazorchuk V., “Quantum deformation and tableaux realization of simple dense $\mathfrak{gl}(n,\mathbb{C})$-modules”, J. Algebra Appl., 2 (2003), 1–20 | DOI

[36] Mazorchuk V., Ovsienko S., “Submodule structure of generalized Verma modules induced from generic Gelfand–Zetlin modules”, Algebr. Represent. Theory, 1 (1998), 3–26 | DOI

[37] Mazorchuk V., Stroppel C., “Cuspidal $\mathfrak{sl}_n$-modules and deformations of certain Brauer tree algebras”, Adv. Math., 228 (2011), 1008–1042, arXiv: 1001.2633 | DOI

[38] McDowell E., “On modules induced from Whittaker modules”, J. Algebra, 96 (1985), 161–177 | DOI

[39] McDowell E., “A module induced from a Whittaker module”, Proc. Amer. Math. Soc., 118 (1993), 349–354 | DOI

[40] Miličić D., Soergel W., “The composition series of modules induced from Whittaker modules”, Comment. Math. Helv., 72 (1997), 503–520 | DOI

[41] Ondrus M., Whittaker modules, central characters, and tensor products for quantum enveloping algebras, Ph.D. Thesis, The University of Wisconsin, Madison, 2004

[42] Ondrus M., Wiesner E., “Whittaker modules for the Virasoro algebra”, J. Algebra Appl., 8 (2009), 363–377, arXiv: 0805.2686 | DOI

[43] Ondrus M., Wiesner E., “Whittaker categories for the Virasoro algebra”, Comm. Algebra, 41 (2013), 3910–3930, arXiv: 1108.2698 | DOI

[44] Ovsienko S., “Finiteness statements for Gelfand–Zetlin modules”, Third International Algebraic Conference in the Ukraine, Inst. of Math., Kiev, 2002, 323–338

[45] Ovsienko S., Linear Algebra Appl., 365 (2003), Strongly nilpotent matrices and Gelfand–Zetlin modules | DOI

[46] Ramirez L. E., “Combinatorics of irreducible Gelfand–Tsetlin $\mathfrak{sl}(3)$-modules”, Algebra Discrete Math., 14 (2012), 276–296

[47] Roos J. E., “Locally Noetherian categories and generalized strictly linearly compact rings. Applications”, Category Theory, Homology Theory and their Applications II, Battelle Institute Conference (Seattle, Wash., 1968), Springer, Berlin, 1969, 197–277 | DOI

[48] Sevostyanov A., “Quantum deformation of Whittaker modules and the Toda lattice”, Duke Math. J., 105 (2000), 211–238, arXiv: math.QA/9905128 | DOI

[49] Weibel C. A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994 | DOI

[50] Zhelobenko D. P., Compact Lie groups and their representations, Nauka, M., 1970

[51] Zimmermann A., Representation theory. A homological algebra point of view, Algebra and Applications, 19, Springer International Publishing, Switzerland, 2014 | DOI