@article{SIGMA_2015_11_a14,
author = {Howard S. Cohl and Rebekah M. Palmer},
title = {Fourier and {Gegenbauer} {Expansions} for {a~Fundamental} {Solution} {of~Laplace's} {Equation} in {Hyperspherical} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a14/}
}
TY - JOUR AU - Howard S. Cohl AU - Rebekah M. Palmer TI - Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a14/ LA - en ID - SIGMA_2015_11_a14 ER -
%0 Journal Article %A Howard S. Cohl %A Rebekah M. Palmer %T Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a14/ %G en %F SIGMA_2015_11_a14
Howard S. Cohl; Rebekah M. Palmer. Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a14/
[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964
[2] Barut A. O., Inomata A., Junker G., “Path integral treatment of the hydrogen atom in a curved space of constant curvature”, J. Phys. A: Math. Gen., 20 (1987), 6271–6280 | DOI
[3] Byrd P. F., Friedman M. D., Handbook of elliptic integrals for engineers and physicists, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, 67, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1954
[4] Chandrasekhar S., An introduction to the study of stellar structure, Dover Publications, Inc., New York, 1957
[5] Cohl H. S., “Fundamental solution of Laplace's equation in hyperspherical geometry”, SIGMA, 7 (2011), 108, 14 pp., arXiv: 1108.3679 | DOI
[6] Cohl H. S., Kalnins E. G., “Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry”, J. Phys. A: Math. Theor., 45 (2012), 145206, 32 pp., arXiv: 1105.0386 | DOI
[7] Cohl H. S., Rau A. R.P., Tohline J. E., Browne D. A., Cazes J. E., Barnes E. I., “Useful alternative to the multipole expansion of $1/r$ potentials”, Phys. Rev. A, 64 (2001), 052509, 5 pp., arXiv: 1104.1499 | DOI
[8] Cohl H. S., Tohline J. E., “A compact cylindrical Green's function expansion for the solution of potential problems”, Astrophys. J., 527 (1999), 86–101 | DOI
[9] Folland G. B., Introduction to partial differential equations, 2nd ed., Princeton University Press, Princeton, NJ, 1995
[10] Fox L., Parker I. B., Chebyshev polynomials in numerical analysis, Oxford University Press, London–New York–Toronto, 1968
[11] Freeden W., Schreiner M., Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup, Advances in Geophysical and Environmental Mechanics, 67, Springer-Verlag, Berlin, 2008
[12] Genest V. X., Vinet L., Zhedanov A., “The Bannai–Ito algebra and a superintegrable system with reflections on the two-sphere”, J. Phys. A: Math. Theor., 47 (2014), 205202, 13 pp., arXiv: 1401.1525 | DOI
[13] Grosche C., Karayan Kh. H., Pogosyan G. S., Sissakian A. N., “Quantum motion on the three-dimensional sphere: the ellipso-cylindrical bases”, J. Phys. A: Math. Gen., 30 (1997), 1629–1657 | DOI
[14] Grosche C., Pogosyan G. S., Sissakian A. N., “Path integral discussion for Smorodinsky–Winternitz potentials. II: The two- and three-dimensional sphere”, Fortschr. Phys., 43 (1995), 523–563 | DOI
[15] Hakobyan Ye. M., Pogosyan G. S., Sissakian A. N., “V.V.I., Isotropic oscillator in the space of constant positive curvature. Interbasis expansions”, Phys. Atomic Nuclei, 62 (1999), 623–637, arXiv: quant-ph/9710045
[16] Herranz F. J., Ballesteros Á., “Superintegrability on three-dimensional Riemannian and relativistic spaces of constant curvature”, SIGMA, 2 (2006), 010, 22 pp., arXiv: math-ph/0512084 | DOI
[17] Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and separation of variables. The $n$-dimensional sphere”, J. Math. Phys., 40 (1999), 1549–1573 | DOI
[18] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI
[19] Lee J. M., Riemannian manifolds. An introduction to curvature, Graduate Texts in Mathematics, 176, Springer-Verlag, New York, 1997 | DOI
[20] Magnus W., Oberhettinger F., Soni R. P., Formulas and theorems for the special functions of mathematical physics, Die Grundlehren der mathematischen Wissenschaften, 52, 3rd ed., Springer-Verlag, New York, 1966
[21] Mhaskar H. N., Narcowich F. J., Prestin J., Ward J. D., “$L^p$ Bernstein estimates and approximation by spherical basis functions”, Math. Comp., 79 (2010), 1647–1679, arXiv: 0810.5075 | DOI
[22] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI
[23] Narcowich F. J., Rowe S. T., Ward J. D., A novel Galerkin method for solving PDEs on the sphere using highly localized kernel bases, arXiv: 1404.5263
[24] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W., NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010
[25] Pogosyan G. S., Yakhno A., “Lie algebra contractions and separation of variables. Three-dimensional sphere”, Phys. Atomic Nuclei, 72 (2009), 836–844 | DOI
[26] Schrödinger E., “Eigenschwingungen des sphärischen Raumes”, Comment. Pontificia Acad. Sci., 2 (1938), 321–364
[27] Schrödinger E., “A method of determining quantum-mechanical eigenvalues and eigenfunctions”, Proc. Roy. Irish Acad. Sect. A, 46 (1940), 9–16
[28] Wen Z. Y., Avery J., “Some properties of hyperspherical harmonics”, J. Math. Phys., 26 (1985), 396–403 | DOI