Generalized Convolution Roots of Positive Definite Kernels on Complex Spheres
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Convolution is an important tool in the construction of positive definite kernels on a manifold. This contribution provides conditions on an $L^2$-positive definite and zonal kernel on the unit sphere of $\mathbb{C}^q$ in order that the kernel can be recovered as a generalized convolution root of an equally positive definite and zonal kernel.
Keywords: positive definiteness; zonal kernels; recovery formula; convolution roots; Zernike or disc polynomials.
@article{SIGMA_2015_11_a13,
     author = {Victor S. Barbosa and Valdir A. Menegatto},
     title = {Generalized {Convolution} {Roots} of {Positive} {Definite} {Kernels} {on~Complex} {Spheres}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a13/}
}
TY  - JOUR
AU  - Victor S. Barbosa
AU  - Valdir A. Menegatto
TI  - Generalized Convolution Roots of Positive Definite Kernels on Complex Spheres
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a13/
LA  - en
ID  - SIGMA_2015_11_a13
ER  - 
%0 Journal Article
%A Victor S. Barbosa
%A Valdir A. Menegatto
%T Generalized Convolution Roots of Positive Definite Kernels on Complex Spheres
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a13/
%G en
%F SIGMA_2015_11_a13
Victor S. Barbosa; Valdir A. Menegatto. Generalized Convolution Roots of Positive Definite Kernels on Complex Spheres. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a13/

[1] Bezubik A., Strasburger A., “On spherical expansions of smooth $SU(n)$-zonal functions on the unit sphere in ${\mathbb C}^n$”, J. Math. Anal. Appl., 404 (2013), 570–578, arXiv: 1112.0648 | DOI

[2] Estrade A., Istas J., “Ball throwing on spheres”, Bernoulli, 16 (2010), 953–970, arXiv: 0810.4004 | DOI

[3] Ferreira J. C., Menegatto V. A., “Eigenvalues of integral operators defined by smooth positive definite kernels”, Integral Equations Operator Theory, 64 (2009), 61–81 | DOI

[4] Gneiting T., “Strictly and non-strictly positive definite functions on spheres”, Bernoulli, 19 (2013), 1327–1349, arXiv: 1111.7077 | DOI

[5] Koornwinder T. H., The addition formula for Jacobi polynomials. II: The Laplace type integral representation and the product formula, Math. Centrum Amsterdam, Report TW133, 1976

[6] Levesley J., Kushpel A., “A multiplier version of the Bernstein inequality on the complex sphere”, J. Comput. Appl. Math., 240 (2013), 184–191, arXiv: 1204.6147 | DOI

[7] Menegatto V. A., Oliveira C. P., “Annihilating properties of convolution operators on complex spheres”, Anal. Math., 31 (2005), 13–30 | DOI

[8] Menegatto V. A., Peron A. P., “Positive definite kernels on complex spheres”, J. Math. Anal. Appl., 254 (2001), 219–232 | DOI

[9] Platonov S. S., “Approximations on compact symmetric spaces of rank $1$”, Sb. Math., 188 (1997), 753–769 | DOI

[10] Platonov S. S., “On some problems in the theory of the approximation of functions on compact homogeneous manifolds”, Sb. Math., 200 (2009), 845–885 | DOI

[11] Quinto E. T., “Injectivity of rotation invariant Radon transforms on complex hyperplanes in $C^n$”, Integral Geometry (Brunswick, Maine, 1984), Contemp. Math., 63, Amer. Math. Soc., Providence, RI, 1987, 245–260 | DOI

[12] Rudin W., Function theory in the unit ball of ${\mathbb C}^n$, Classics in Mathematics, Springer-Verlag, Berlin, 2008

[13] Schaback R., “A unified theory of radial basis functions: Native Hilbert spaces for radial basis functions, II”, J. Comput. Appl. Math., 121 (2000), 165–177 | DOI

[14] Schreiner M., “Locally supported kernels for spherical spline interpolation”, J. Approx. Theory, 89 (1997), 172–194 | DOI

[15] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975

[16] Thirulogasanthar K., Saad N., Honnouvo G., $2D$-Zernike polynomials and coherent state quantization of the unit disc, arXiv: 1303.5483

[17] Torre A., “Generalized Zernike or disc polynomials: an application in quantum optics”, J. Comput. Appl. Math., 222 (2008), 622–644 | DOI

[18] Wünsche A., “Generalized Zernike or disc polynomials”, J. Comput. Appl. Math., 174 (2005), 135–163 | DOI

[19] Ziegel J., “Convolution roots and differentiability of isotropic positive definite functions on spheres”, Proc. Amer. Math. Soc., 142 (2014), 2063–2077, arXiv: 1201.5833 | DOI