@article{SIGMA_2015_11_a13,
author = {Victor S. Barbosa and Valdir A. Menegatto},
title = {Generalized {Convolution} {Roots} of {Positive} {Definite} {Kernels} {on~Complex} {Spheres}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a13/}
}
TY - JOUR AU - Victor S. Barbosa AU - Valdir A. Menegatto TI - Generalized Convolution Roots of Positive Definite Kernels on Complex Spheres JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a13/ LA - en ID - SIGMA_2015_11_a13 ER -
%0 Journal Article %A Victor S. Barbosa %A Valdir A. Menegatto %T Generalized Convolution Roots of Positive Definite Kernels on Complex Spheres %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a13/ %G en %F SIGMA_2015_11_a13
Victor S. Barbosa; Valdir A. Menegatto. Generalized Convolution Roots of Positive Definite Kernels on Complex Spheres. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a13/
[1] Bezubik A., Strasburger A., “On spherical expansions of smooth $SU(n)$-zonal functions on the unit sphere in ${\mathbb C}^n$”, J. Math. Anal. Appl., 404 (2013), 570–578, arXiv: 1112.0648 | DOI
[2] Estrade A., Istas J., “Ball throwing on spheres”, Bernoulli, 16 (2010), 953–970, arXiv: 0810.4004 | DOI
[3] Ferreira J. C., Menegatto V. A., “Eigenvalues of integral operators defined by smooth positive definite kernels”, Integral Equations Operator Theory, 64 (2009), 61–81 | DOI
[4] Gneiting T., “Strictly and non-strictly positive definite functions on spheres”, Bernoulli, 19 (2013), 1327–1349, arXiv: 1111.7077 | DOI
[5] Koornwinder T. H., The addition formula for Jacobi polynomials. II: The Laplace type integral representation and the product formula, Math. Centrum Amsterdam, Report TW133, 1976
[6] Levesley J., Kushpel A., “A multiplier version of the Bernstein inequality on the complex sphere”, J. Comput. Appl. Math., 240 (2013), 184–191, arXiv: 1204.6147 | DOI
[7] Menegatto V. A., Oliveira C. P., “Annihilating properties of convolution operators on complex spheres”, Anal. Math., 31 (2005), 13–30 | DOI
[8] Menegatto V. A., Peron A. P., “Positive definite kernels on complex spheres”, J. Math. Anal. Appl., 254 (2001), 219–232 | DOI
[9] Platonov S. S., “Approximations on compact symmetric spaces of rank $1$”, Sb. Math., 188 (1997), 753–769 | DOI
[10] Platonov S. S., “On some problems in the theory of the approximation of functions on compact homogeneous manifolds”, Sb. Math., 200 (2009), 845–885 | DOI
[11] Quinto E. T., “Injectivity of rotation invariant Radon transforms on complex hyperplanes in $C^n$”, Integral Geometry (Brunswick, Maine, 1984), Contemp. Math., 63, Amer. Math. Soc., Providence, RI, 1987, 245–260 | DOI
[12] Rudin W., Function theory in the unit ball of ${\mathbb C}^n$, Classics in Mathematics, Springer-Verlag, Berlin, 2008
[13] Schaback R., “A unified theory of radial basis functions: Native Hilbert spaces for radial basis functions, II”, J. Comput. Appl. Math., 121 (2000), 165–177 | DOI
[14] Schreiner M., “Locally supported kernels for spherical spline interpolation”, J. Approx. Theory, 89 (1997), 172–194 | DOI
[15] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975
[16] Thirulogasanthar K., Saad N., Honnouvo G., $2D$-Zernike polynomials and coherent state quantization of the unit disc, arXiv: 1303.5483
[17] Torre A., “Generalized Zernike or disc polynomials: an application in quantum optics”, J. Comput. Appl. Math., 222 (2008), 622–644 | DOI
[18] Wünsche A., “Generalized Zernike or disc polynomials”, J. Comput. Appl. Math., 174 (2005), 135–163 | DOI
[19] Ziegel J., “Convolution roots and differentiability of isotropic positive definite functions on spheres”, Proc. Amer. Math. Soc., 142 (2014), 2063–2077, arXiv: 1201.5833 | DOI