The Quantum Pair of Pants
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compute the spectrum of the operator of multiplication by the complex coordinate in a Hilbert space of holomorphic functions on a disk with two circular holes. Additionally we determine the structure of the $C^*$-algebra generated by that operator. The algebra can be considered as the quantum pair of pants.
Mots-clés : quantum domains; $C^*$-algebras.
@article{SIGMA_2015_11_a11,
     author = {Slawomir Klimek and Matt McBride and Sumedha Rathnayake and Kaoru Sakai},
     title = {The {Quantum} {Pair} of {Pants}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a11/}
}
TY  - JOUR
AU  - Slawomir Klimek
AU  - Matt McBride
AU  - Sumedha Rathnayake
AU  - Kaoru Sakai
TI  - The Quantum Pair of Pants
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a11/
LA  - en
ID  - SIGMA_2015_11_a11
ER  - 
%0 Journal Article
%A Slawomir Klimek
%A Matt McBride
%A Sumedha Rathnayake
%A Kaoru Sakai
%T The Quantum Pair of Pants
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a11/
%G en
%F SIGMA_2015_11_a11
Slawomir Klimek; Matt McBride; Sumedha Rathnayake; Kaoru Sakai. The Quantum Pair of Pants. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a11/

[1] Abrahamse M. B., “Toeplitz operators in multiply connected regions”, Amer. J. Math., 96 (1974), 261–297 | DOI

[2] Abrahamse M. B., Douglas R. G., “Operators on multiply connected domains”, Proc. Roy. Irish Acad. Sect. A, 74 (1974), 135–141 | DOI

[3] Ahlfors L. V., Complex analysis. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics, 3rd ed., McGraw-Hill Book Co., New York, 1978

[4] Coburn L. A., “Singular integral operators and Toeplitz operators on odd spheres”, Indiana Univ. Math. J., 23 (1973), 433–439 | DOI

[5] Conway J. B., A course in operator theory, Graduate Studies in Mathematics, 21, Amer. Math. Soc., Providence, RI, 2000

[6] Halmos P. R., Sunder V. S., Bounded integral operators on $L^2$ spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 96, Springer-Verlag, Berlin–New York, 1978

[7] Klimek S., Lesniewski A., “Quantum Riemann surfaces. I: The unit disc”, Comm. Math. Phys., 146 (1992), 103–122 | DOI

[8] Klimek S., Lesniewski A., “Quantum Riemann surfaces. II: The discrete series”, Lett. Math. Phys., 24 (1992), 125–139 | DOI

[9] Klimek S., Lesniewski A., “A two-parameter quantum deformation of the unit disc”, J. Funct. Anal., 115 (1993), 1–23 | DOI

[10] Klimek S., Lesniewski A., “Quantum Riemann surfaces. III: The exceptional cases”, Lett. Math. Phys., 32 (1994), 45–61 | DOI

[11] Klimek S., Lesniewski A., “Quantum Riemann surfaces for arbitrary Planck's constant”, J. Math. Phys., 37 (1996), 2157–2165 | DOI

[12] Klimek S., McBride M., “D-bar operators on quantum domains”, Math. Phys. Anal. Geom., 13 (2010), 357–390, arXiv: 1001.2216 | DOI

[13] Klimek S., McBride M., “A note on Dirac operators on the quantum punctured disk”, SIGMA, 6 (2010), 056, 12 pp., arXiv: 1003.5618 | DOI

[14] Klimek S., McBride M., “Classical limit of the d-bar operators on quantum domains”, J. Math. Phys., 52 (2011), 093501, 16 pp., arXiv: 1101.2645 | DOI

[15] Klimek S., McBride M., “A note on gluing Dirac type operators on a mirror quantum two-sphere”, SIGMA, 10 (2014), 036, 15 pp., arXiv: 1309.7096 | DOI

[16] Markushevich A. I., Theory of functions of a complex variable, Chelsea Publishing Co., New York, 2005