Hankel Determinants of Zeta Values
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotics of Hankel determinants constructed using the values $\zeta(an+b)$ of the Riemann zeta function at positive integers in an arithmetic progression. Our principal result is a Diophantine application of the asymptotics.
Keywords: irrationality; Hankel determinant; zeta value.
@article{SIGMA_2015_11_a100,
     author = {Alan Haynes and Wadim Zudilin},
     title = {Hankel {Determinants} of {Zeta} {Values}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a100/}
}
TY  - JOUR
AU  - Alan Haynes
AU  - Wadim Zudilin
TI  - Hankel Determinants of Zeta Values
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a100/
LA  - en
ID  - SIGMA_2015_11_a100
ER  - 
%0 Journal Article
%A Alan Haynes
%A Wadim Zudilin
%T Hankel Determinants of Zeta Values
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a100/
%G en
%F SIGMA_2015_11_a100
Alan Haynes; Wadim Zudilin. Hankel Determinants of Zeta Values. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a100/

[1] Apéry R., “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61, 1979, 11–13 | Zbl

[2] Ball K., Rivoal T., “Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs”, Invent. Math., 146 (2001), 193–207 | DOI | MR | Zbl

[3] Kronecker L., “Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen”, Berl. Monatsber., 1881, 535–600 | Zbl

[4] Monien H., Hankel determinants of Dirichlet series, arXiv: 0901.1883

[5] Monien H., Personal communication, 2011

[6] Pólya G., Szeg{ő} G., Problems and theorems in analysis, v. II, Springer-Verlag, New York–Heidelberg, 1976 | DOI