Hankel Determinants of Zeta Values
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015)
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the asymptotics of Hankel determinants constructed using the values $\zeta(an+b)$ of the Riemann zeta function at positive integers in an arithmetic progression. Our principal result is a Diophantine application of the asymptotics.
Keywords:
irrationality; Hankel determinant; zeta value.
@article{SIGMA_2015_11_a100,
author = {Alan Haynes and Wadim Zudilin},
title = {Hankel {Determinants} of {Zeta} {Values}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a100/}
}
Alan Haynes; Wadim Zudilin. Hankel Determinants of Zeta Values. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a100/
[1] Apéry R., “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61, 1979, 11–13 | Zbl
[2] Ball K., Rivoal T., “Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs”, Invent. Math., 146 (2001), 193–207 | DOI | MR | Zbl
[3] Kronecker L., “Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen”, Berl. Monatsber., 1881, 535–600 | Zbl
[4] Monien H., Hankel determinants of Dirichlet series, arXiv: 0901.1883
[5] Monien H., Personal communication, 2011
[6] Pólya G., Szeg{ő} G., Problems and theorems in analysis, v. II, Springer-Verlag, New York–Heidelberg, 1976 | DOI