@article{SIGMA_2015_11_a10,
author = {Jing Wang and Istv\'an Heckenberger},
title = {Rank 2 {Nichols} {Algebras} of {Diagonal} {Type} over {Fields} of {Positive} {Characteristic}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a10/}
}
TY - JOUR AU - Jing Wang AU - István Heckenberger TI - Rank 2 Nichols Algebras of Diagonal Type over Fields of Positive Characteristic JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a10/ LA - en ID - SIGMA_2015_11_a10 ER -
Jing Wang; István Heckenberger. Rank 2 Nichols Algebras of Diagonal Type over Fields of Positive Characteristic. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a10/
[1] Andruskiewitsch N., “About finite dimensional Hopf algebras”, Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Contemp. Math., 294, Amer. Math. Soc., Providence, RI, 2002, 1–57 | DOI
[2] Andruskiewitsch N., Graña M., “Braided Hopf algebras over non-abelian finite groups”, Bol. Acad. Nac. Cienc. (Córdoba), 63 (1999), 45–78, arXiv: math.QA/9802074
[3] Andruskiewitsch N., Heckenberger I., Schneider H.-J., “The Nichols algebra of a semisimple Yetter–Drinfeld module”, Amer. J. Math., 132 (2010), 1493–1547, arXiv: 0803.2430
[4] Andruskiewitsch N., Schneider H.-J., “Lifting of quantum linear spaces and pointed Hopf algebras of order $p^3$”, J. Algebra, 209 (1998), 658–691, arXiv: math.QA/9803058 | DOI
[5] Andruskiewitsch N., Schneider H.-J., “Finite quantum groups and Cartan matrices”, Adv. Math., 154 (2000), 1–45 | DOI
[6] Andruskiewitsch N., Schneider H.-J., “Pointed Hopf algebras”, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge University Press, Cambridge, 2002, 1–68, arXiv: math.QA/0110136 | DOI
[7] Andruskiewitsch N., Schneider H.-J., “On the classification of finite-dimensional pointed Hopf algebras”, Ann. of Math., 171 (2010), 375–417, arXiv: math.QA/0502157 | DOI
[8] Cibils C., Lauve A., Witherspoon S., “Hopf quivers and Nichols algebras in positive characteristic”, Proc. Amer. Math. Soc., 137 (2009), 4029–4041, arXiv: 0901.4408 | DOI
[9] Cuntz M., Heckenberger I., “Weyl groupoids of rank two and continued fractions”, Algebra Number Theory, 3 (2009), 317–340, arXiv: 0807.0124 | DOI
[10] Cuntz M., Heckenberger I., “Weyl groupoids with at most three objects”, J. Pure Appl. Algebra, 213 (2009), 1112–1128, arXiv: 0805.1810 | DOI
[11] Cuntz M., Heckenberger I., “Reflection groupoids of rank two and cluster algebras of type $A$”, J. Combin. Theory Ser. A, 118 (2011), 1350–1363, arXiv: 0911.3051 | DOI
[12] Heckenberger I., “The Weyl groupoid of a Nichols algebra of diagonal type”, Invent. Math., 164 (2006), 175–188 | DOI
[13] Heckenberger I., “Rank 2 Nichols algebras with finite arithmetic root system”, Algebr. Represent. Theory, 11 (2008), 115–132, arXiv: math.QA/0412458 | DOI
[14] Heckenberger I., “Classification of arithmetic root systems”, Adv. Math., 220 (2009), 59–124, arXiv: math.QA/0605795 | DOI
[15] Heckenberger I., Schneider H.-J., “Nichols algebras over groups with finite root system of rank two, I”, J. Algebra, 324 (2010), 3090–3114 | DOI
[16] Heckenberger I., Schneider H.-J., “Root systems and Weyl groupoids for Nichols algebras”, Proc. Lond. Math. Soc., 101 (2010), 623–654, arXiv: 0807.0691 | DOI
[17] Heckenberger I., Schneider H.-J., “Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid”, Israel J. Math., 197 (2013), 139–187, arXiv: 0909.0293 | DOI
[18] Heckenberger I., Yamane H., “A generalization of Coxeter groups, root systems, and Matsumoto's theorem”, Math. Z., 259 (2008), 255–276, arXiv: math.QA/0610823 | DOI
[19] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI
[20] Kharchenko V. K., “A quantum analogue of the Poincaré–Birkhoff–Witt theorem”, Algebra and Logic, 38 (1999), 259–276, arXiv: math.QA/0005101 | DOI
[21] Lusztig G., Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010 | DOI
[22] Nichols W. D., “Bialgebras of type one”, Comm. Algebra, 6 (1978), 1521–1552 | DOI
[23] Rosso M., “Quantum groups and quantum shuffles”, Invent. Math., 133 (1998), 399–416 | DOI
[24] Schauenburg P., “A characterization of the Borel-like subalgebras of quantum enveloping algebras”, Comm. Algebra, 24 (1996), 2811–2823 | DOI
[25] Semikhatov A. M., Virasoro central charges for Nichols algebras, arXiv: 1109.1767
[26] Semikhatov A. M., Tipunin I. Yu., “The Nichols algebra of screenings”, Commun. Contemp. Math., 14 (2012), 1250029, 66 pp., arXiv: 1101.5810 | DOI
[27] Semikhatov A. M., Tipunin I. Yu., “Logarithmic $\widehat{s\ell}(2)$ CFT models from Nichols algebras, I”, J. Phys. A: Math. Theor., 46 (2013), 494011, 53 pp., arXiv: 1301.2235 | DOI
[28] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI
[29] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI