@article{SIGMA_2015_11_a1,
author = {Naruhiko Aizawa and Radhakrishnan Chandrashekar and Jambulingam Segar},
title = {Lowest {Weight} {Representations,} {Singular} {Vectors} and {Invariant} {Equations} for {a~Class} of {Conformal} {Galilei} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a1/}
}
TY - JOUR AU - Naruhiko Aizawa AU - Radhakrishnan Chandrashekar AU - Jambulingam Segar TI - Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a1/ LA - en ID - SIGMA_2015_11_a1 ER -
%0 Journal Article %A Naruhiko Aizawa %A Radhakrishnan Chandrashekar %A Jambulingam Segar %T Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a1/ %G en %F SIGMA_2015_11_a1
Naruhiko Aizawa; Radhakrishnan Chandrashekar; Jambulingam Segar. Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a1/
[1] Aizawa N., Dobrev V. K., Doebner H.-D., “Intertwining operators for Schrödinger algebras and hierarchy of invariant equations”, Quantum Theory and Symmetries (Kraków, 2001), eds. E. Kapuścik, A. Horzela, World Sci. Publ., River Edge, NJ, 2002, 222–227 | DOI | MR | Zbl
[2] Aizawa N., Dobrev V. K., Doebner H.-D., Stoimenov S., “Intertwining operators for the Schrödinger algebra in $ n \geq 3 $ space dimension”, Proceedings of the VII International Workshop on “Lie Theory and its Applications in Physics”, eds. H.-D. Doebner, V. K. Dobrev, Heron Press, Sofia, 2008, 372–399
[3] Aizawa N., Isaac P. S., “On irreducible representations of the exotic conformal Galilei algebra”, J. Phys. A: Math. Theor., 44 (2011), 035401, 8 pp., arXiv: 1010.4075 | DOI | MR | Zbl
[4] Aizawa N., Isaac P. S., Kimura Y., “Highest weight representations and Kac determinants for a class of conformal Galilei algebras with central extension”, Internat. J. Math., 23 (2012), 1250118, 25 pp., arXiv: 1204.2871 | DOI | MR | Zbl
[5] Aizawa N., Kimura Y., Segar J., “Intertwining operators for $\ell$-conformal Galilei algebras and hierarchy of invariant equations”, J. Phys. A: Math. Theor., 46 (2013), 405204, 14 pp., arXiv: 1308.0121 | DOI | MR | Zbl
[6] Alishahiha M., Davody A., Vahedi A., “On AdS/CFT of Galilean conformal field theories”, J. High Energy Phys., 2009:8 (2009), 022, 16 pp., arXiv: 0903.3953 | DOI | MR
[7] Andrzejewski K., Galajinsky A., Gonera J., Masterov I., “Conformal Newton–Hooke symmetry of Pais–Uhlenbeck oscillator”, Nuclear Phys. B, 885 (2014), 150–162, arXiv: 1402.1297 | DOI | MR
[8] Andrzejewski K., Gonera J., “Dynamical interpretation of nonrelativistic conformal groups”, Phys. Lett. B, 721 (2013), 319–322 | DOI | MR
[9] Andrzejewski K., Gonera J., “Unitary representations of $N$-conformal Galilei group”, Phys. Rev. D, 88 (2013), 065011, 9 pp., arXiv: 1305.4777 | DOI | MR
[10] Andrzejewski K., Gonera J., Kijanka-Dec A., “Nonrelativistic conformal transformations in Lagrangian formalism”, Phys. Rev. D, 87 (2013), 065012, 6 pp., arXiv: 1301.1531 | DOI | MR
[11] Andrzejewski K., Gonera J., Kosiński P., Maślanka P., “On dynamical realizations of $l$-conformal Galilei groups”, Nuclear Phys. B, 876 (2013), 309–321, arXiv: 1305.6805 | DOI | MR | Zbl
[12] Andrzejewski K., Gonera J., Maślanka P., “Nonrelativistic conformal groups and their dynamical realizations”, Phys. Rev. D, 86 (2012), 065009, 8 pp., arXiv: 1204.5950 | DOI | MR
[13] Bagchi A., Gopakumar R., “Galilean conformal algebras and AdS/CFT”, J. High Energy Phys., 2009:7 (2009), 037, 22 pp., arXiv: 0902.1385 | DOI | MR
[14] Balasubramanian K., McGreevy J., “Gravity duals for nonrelativistic conformal field theories”, Phys. Rev. Lett., 101 (2008), 061601, 4 pp., arXiv: 0804.4053 | DOI | MR | Zbl
[15] Dixmier J., Enveloping algebras, North-Holland Mathematical Library, 14, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977 | MR | Zbl
[16] Dobrev V. K., “Canonical construction of differential operators intertwining representations of real semisimple Lie groups”, Rep. Math. Phys., 25 (1988), 159–181 | DOI | MR | Zbl
[17] Dobrev V. K., “Subsingular vectors and conditionally invariant ($q$-deformed) equations”, J. Phys. A: Math. Gen., 28 (1995), 7135–7155 | DOI | MR | Zbl
[18] Dobrev V. K., “Kazhdan–Lusztig polynomials, subsingular vectors and conditionally invariant ($q$-deformed) equations”, Symmetries in Science, IX (Bregenz, 1996), Plenum, New York, 1997, 47–80 | DOI | MR
[19] Dobrev V. K., Doebner H.-D., Mrugalla Ch., “Lowest weight representations of the Schrödinger algebra and generalized heat Schrödinger equations”, Rep. Math. Phys., 39 (1997), 201–218 | DOI | MR | Zbl
[20] Galajinsky A., Masterov I., “Remarks on $l$-conformal extension of the Newton–Hooke algebra”, Phys. Lett. B, 702 (2011), 265–267, arXiv: 1104.5115 | DOI | MR
[21] Galajinsky A., Masterov I., “Dynamical realization of $l$-conformal Galilei algebra and oscillators”, Nuclear Phys. B, 866 (2013), 212–227, arXiv: 1208.1403 | DOI | MR | Zbl
[22] Galajinsky A., Masterov I., “Dynamical realizations of $l$-conformal Newton–Hooke group”, Phys. Lett. B, 723 (2013), 190–195, arXiv: 1303.3419 | DOI | MR
[23] Hagen C. R., “Scale and conformal transformations in Galilean-covariant field theory”, Phys. Rev. D, 5 (1972), 377–388 | DOI
[24] Havas P., Plebański J., “Conformal extensions of the Galilei group and their relation to the Schrödinger group”, J. Math. Phys., 19 (1978), 482–488 | DOI | MR | Zbl
[25] Henkel M., “Schrödinger invariance and strongly anisotropic critical systems”, J. Stat. Phys., 75 (1994), 1023–1061, arXiv: hep-th/9310081 | DOI | Zbl
[26] Hussin V., Jacques M., “On nonrelativistic conformal symmetries and invariant tensor fields”, J. Phys. A: Math. Gen., 19 (1986), 3471–3485 | DOI | MR | Zbl
[27] Kac V. G., Raina A. K., Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987 | MR | Zbl
[28] Lü R., Mazorchuk V., Zhao K., “On simple modules over conformal Galilei algebras”, J. Pure Appl. Algebra, 218 (2014), 1885–1899, arXiv: 1310.6284 | DOI | MR | Zbl
[29] Lukierski J., Stichel P. C., Zakrzewski W. J., “Exotic Galilean conformal symmetry and its dynamical realisations”, Phys. Lett. A, 357 (2006), 1–5, arXiv: hep-th/0511259 | DOI | MR | Zbl
[30] Martelli D., Tachikawa Y., “Comments on Galilean conformal field theories and their geometric realization”, J. High Energy Phys., 2010:5 (2010), 091, 31 pp., arXiv: 0903.5184 | DOI | MR | Zbl
[31] Mrugalla Ch., Quantum mechanical evolution equations based on Lie-algebraic and $q$-deformed symmetries, Ph. D. Thesis, Technischen Universität Clausthal, 1997
[32] Negro J., del Olmo M. A., Rodríguez-Marco A., “Nonrelativistic conformal groups”, J. Math. Phys., 38 (1997), 3786–3809 | DOI | MR | Zbl
[33] Niederer U., “The maximal kinematical invariance group of the free Schrödinger equation”, Helv. Phys. Acta, 45 (1972), 802–810 | MR
[34] Nishida Y., Son D. T., “Nonrelativistic conformal field theories”, Phys. Rev. D, 76 (2007), 086004, 14 pp., arXiv: 0706.3746 | DOI | MR
[35] Shapovalov N. N., “A certain bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra”, Funct. Anal. Appl., 6 (1972), 307–312 | DOI | MR
[36] Son D. T., “Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry”, Phys. Rev. D, 78 (2008), 046003, 7 pp., arXiv: 0804.3972 | DOI | MR
[37] Stichel P. C., Zakrzewski W. J., “A new type of conformal dynamics”, Ann. Physics, 310 (2004), 158–180, arXiv: hep-th/0309038 | DOI | MR | Zbl
[38] Vinet L., Zhedanov A., “Representations of the Schrödinger group and matrix orthogonal polynomials”, J. Phys. A: Math. Theor., 44 (2011), 355201, 28 pp., arXiv: 1105.0701 | DOI | MR | Zbl
[39] Zhang P., Horváthy P. A., “Non-relativistic conformal symmetries in fluid mechanics”, Eur. Phys. J. C, 65 (2010), 607–614, arXiv: 0906.3594 | DOI