Geometry of Centroaffine Surfaces in $\mathbb{R}^5$
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in $\mathbb{R}^5 \setminus \{0\}$ with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.
Keywords: centroaffine geometry; Cartan's method of moving frames.
@article{SIGMA_2015_11_a0,
     author = {Nathaniel Bushek and Jeanne N. Clelland},
     title = {Geometry of {Centroaffine} {Surfaces} in $\mathbb{R}^5$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a0/}
}
TY  - JOUR
AU  - Nathaniel Bushek
AU  - Jeanne N. Clelland
TI  - Geometry of Centroaffine Surfaces in $\mathbb{R}^5$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a0/
LA  - en
ID  - SIGMA_2015_11_a0
ER  - 
%0 Journal Article
%A Nathaniel Bushek
%A Jeanne N. Clelland
%T Geometry of Centroaffine Surfaces in $\mathbb{R}^5$
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a0/
%G en
%F SIGMA_2015_11_a0
Nathaniel Bushek; Jeanne N. Clelland. Geometry of Centroaffine Surfaces in $\mathbb{R}^5$. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a0/

[1] Clelland J. N., From Frenet to Cartan: the method of moving frames, in preparation

[2] Fulton W., Harris J., Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[3] Furuhata H., “Minimal centroaffine immersions of codimension two”, Bull. Belg. Math. Soc. Simon Stevin, 7 (2000), 125–134 | MR | Zbl

[4] Furuhata H., Kurose T., “Self-dual centroaffine surfaces of codimension two with constant affine mean curvature”, Bull. Belg. Math. Soc. Simon Stevin, 9 (2002), 573–587 | MR | Zbl

[5] Gardner R. B., Wilkens G. R., “The fundamental theorems of curves and hypersurfaces in centro-affine geometry”, Bull. Belg. Math. Soc. Simon Stevin, 4 (1997), 379–401 | MR | Zbl

[6] Griffiths P., “On {C}artan's method of {L}ie groups and moving frames as applied to uniqueness and existence questions in differential geometry”, Duke Math. J., 41 (1974), 775–814 | DOI | MR | Zbl

[7] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[8] Laugwitz D., Differentialgeometrie in Vektorräumen, unter besonderer Berücksichtigung der unendlichdimensionalen Räume, Friedr. Vieweg Sohn, Braunschweig, 1965 | MR | Zbl

[9] Li A. M., Wang C. P., “Canonical centroaffine hypersurfaces in ${\mathbb R}^{n+1}$”, Results Math., 20 (1991), 660–681 | DOI | MR | Zbl

[10] Liu H. L., Wang C. P., “The centroaffine Tchebychev operator”, Results Math., 27 (1995), 77–92 | DOI | MR | Zbl

[11] Mayer O., Myller A., “La géométrie centroaffine des courbes planes”, Ann. Scí. de l'Universit'e de Jassy, 18 (1933), 234–280

[12] Milnor J., Husemoller D., Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, 73, Springer-Verlag, New York–Heidelberg, 1973 | MR | Zbl

[13] Nomizu K., Sasaki T., Nagoya Math. J., 132 (1993), Centroaffine immersions of codimension two and projective hypersurface theory | MR

[14] Nomizu K., Vrancken L., “A new equiaffine theory for surfaces in ${\mathbb R}^4$”, Internat. J. Math., 4 (1993), 127–165 | DOI | MR | Zbl

[15] Scharlach C., “Centroaffine first order invariants of surfaces in ${\mathbb R}^4$”, Results Math., 27 (1995), 141–159 | DOI | MR | Zbl

[16] Scharlach C., New Developments in Differential Geometry (Budapest, 1996), Kluwer Acad. Publ., Dordrecht, 1999, Centroaffine differential geometry of (positive) definite oriented surfaces in ${\mathbb R}^4$ | MR

[17] Scharlach C., Simon U., Verstraelen L., Vrancken L., “A new intrinsic curvature invariant for centroaffine hypersurfaces”, Beiträge Algebra Geom., 38 (1997), 437–458 | MR | Zbl

[18] Scharlach C., Vrancken L., “A curvature invariant for centroaffine hypersurfaces, II”, Geometry and Topology of Submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), World Sci. Publ., River Edge, NJ, 1996, 341–350 | MR | Zbl

[19] Scharlach C., Vrancken L., “Centroaffine surfaces in ${\mathbb R}^4$ with planar $\nabla$-geodesics”, Proc. Amer. Math. Soc., 126 (1998), 213–219 | DOI | MR | Zbl

[20] Wang C. P., “Centroaffine minimal hypersurfaces in ${\mathbb R}^{n+1}$”, Geom. Dedicata, 51 (1994), 63–74 | DOI | MR | Zbl

[21] Wilkens G. R., “Centro-affine geometry in the plane and feedback invariants of two-state scalar control systems”, Differential Geometry and Control (Boulder, CO, 1997), Proc. Sympos. Pure Math., 64, Amer. Math. Soc., Providence, RI, 1999, 319–333 | DOI | MR | Zbl

[22] Yang Y., Liu H., “Minimal centroaffine immersions of codimension two”, Results Math., 52 (2008), 423–437 | DOI | MR | Zbl

[23] Yang Y., Yu Y., Liu H., “Flat centroaffine surfaces with the degenerate second fundamental form and vanishing Pick invariant in $\mathbb{R}^4$”, J. Math. Anal. Appl., 397 (2013), 161–171 | DOI | MR | Zbl