Wong's Equations and Charged Relativistic Particles in Non-Commutative Space
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In analogy to Wong's equations describing the motion of a charged relativistic point particle in the presence of an external Yang–Mills field, we discuss the motion of such a particle in non-commutative space subject to an external $U_\star(1)$ gauge field. We conclude that the latter equations are only consistent in the case of a constant field strength. This formulation, which is based on an action written in Moyal space, provides a coarser level of description than full QED on non-commutative space. The results are compared with those obtained from the different Hamiltonian approaches. Furthermore, a continuum version for Wong's equations and for the motion of a particle in non-commutative space is derived.
Keywords: non-commutative geometry; gauge field theories; Lagrangian and Hamiltonian formalism; symmetries and conservation laws.
@article{SIGMA_2014_10_a98,
     author = {Herbert Balasin and Daniel N. Blaschke and Fran\c{c}ois Gieres and Manfred Schweda},
     title = {Wong's {Equations} and {Charged} {Relativistic} {Particles} {in~Non-Commutative} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a98/}
}
TY  - JOUR
AU  - Herbert Balasin
AU  - Daniel N. Blaschke
AU  - François Gieres
AU  - Manfred Schweda
TI  - Wong's Equations and Charged Relativistic Particles in Non-Commutative Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a98/
LA  - en
ID  - SIGMA_2014_10_a98
ER  - 
%0 Journal Article
%A Herbert Balasin
%A Daniel N. Blaschke
%A François Gieres
%A Manfred Schweda
%T Wong's Equations and Charged Relativistic Particles in Non-Commutative Space
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a98/
%G en
%F SIGMA_2014_10_a98
Herbert Balasin; Daniel N. Blaschke; François Gieres; Manfred Schweda. Wong's Equations and Charged Relativistic Particles in Non-Commutative Space. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a98/

[1] Acatrinei C., Comments on noncommutative particle dynamics, arXiv: hep-th/0106141 | MR

[2] Acatrinei C., “Lagrangian versus quantization”, J. Phys. A: Math. Gen., 37 (2004), 1225–1230, arXiv: hep-th/0212321 | DOI | MR | Zbl

[3] Acatrinei C. S., “Surprises in noncommutative dynamics”, Ann. U. Craiova Phys., 21 (2011), 107–116

[4] Adorno T. C., Gitman D. M., Shabad A. E., Vassilevich D. V., “Classical noncommutative electrodynamics with external source”, Phys. Rev. D, 84 (2011), 065003, 13 pp., arXiv: 1106.0639 | DOI

[5] Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., “On the unitarity problem in space/time noncommutative theories”, Phys. Lett. B, 533 (2002), 178–181, arXiv: hep-th/0201222 | DOI | MR | Zbl

[6] Balachandran A. P., Borchardt S., Stern A., “Lagrangian and Hamiltonian descriptions of Yang–Mills particles”, Phys. Rev. D, 17 (1978), 3247–3256 | DOI

[7] Balachandran A. P., Marmo G., Skagerstam B. S., Stern A., Gauge symmetries and fibre bundles. Applications to particle dynamics, Lecture Notes in Physics, 188, Springer-Verlag, Berlin, 1983 | MR | Zbl

[8] Blaschke D. N., Kronberger E., Sedmik R. I.P., Wohlgenannt M., “Gauge theories on deformed spaces”, SIGMA, 6 (2010), 062, 70 pp., arXiv: 1004.2127 | DOI | MR | Zbl

[9] Brown L. S., Weisberger W. I., “Vacuum polarization in uniform nonabelian gauge fields”, Nuclear Phys. B, 157 (1979), 285–326 ; Errata, Nuclear Phys. B, 172 (1980), 544 | DOI | MR | DOI

[10] Chamseddine A. H., Connes A., Marcolli M., “Gravity and the standard model with neutrino mixing”, Adv. Theor. Math. Phys., 11 (2007), 991–1089, arXiv: hep-th/0610241 | DOI | MR | Zbl

[11] Delduc F., Duret Q., Gieres F., Lefrançois M., “Magnetic fields in noncommutative quantum mechanics”, J. Phys. Conf. Ser., 103 (2008), 012020, 26 pp., arXiv: 0710.2239 | DOI

[12] Deriglazov A. A., “Poincare covariant mechanics on noncommutative space”, J. High Energy Phys., 2003:3 (2003), 021, 9 pp., arXiv: hep-th/0211105 | DOI | MR

[13] Dixon W. G., “Dynamics of extended bodies in general relativity. {I}: {M}omentum and angular momentum”, Proc. Roy. Soc. London Ser. A, 314 (1970), 499–527 | DOI | MR

[14] Dubois-Violette M., Kerner R., Madore J., “Noncommutative differential geometry and new models of gauge theory”, J. Math. Phys., 31 (1990), 323–330 | DOI | MR | Zbl

[15] Duval C., “On the prequantum description of spinning particles in an external gauge field”, Differential Geometrical Methods in Mathematical Physics, {P}roc. {C}onf. ({A}ix-en-{P}rovence/{S}alamanca, 1979), Lecture Notes in Math., 836, Springer, Berlin, 1980, 49–66 | DOI | MR

[16] Duval C., Horváthy P., “Particles with internal structure: the geometry of classical motions and conservation laws”, Ann. Physics, 142 (1982), 10–33 | DOI | MR

[17] Duval C., Horváthy P. A., “The ‘Peierls substitution’ and the exotic Galilei group”, Phys. Lett. B, 479 (2000), 284–290, arXiv: hep-th/0002233 | DOI | MR | Zbl

[18] Duval C., Horváthy P. A., “Exotic {G}alilean symmetry in the non-commutative plane and the {H}all effect”, J. Phys. A: Math. Gen., 34 (2001), 10097–10107, arXiv: hep-th/0106089 | DOI | MR | Zbl

[19] Estienne B., Haaker S. M., Schoutens K., “Particles in non-{A}belian gauge potentials: {L}andau problem and insertion of non-{A}belian flux”, New J. Phys., 13 (2011), 045012, 24 pp., arXiv: 1102.0176 | DOI | MR

[20] Fatollahi A. H., Mohammadzadeh H., “On the classical dynamics of charges in non-commutative QED”, Eur. Phys. J. C, 36 (2004), 113–116, arXiv: hep-th/0404209 | DOI | MR | Zbl

[21] Gracia-Bondía J. M., Várilly J. C., “Algebras of distributions suitable for phase-space quantum mechanics, {I}”, J. Math. Phys., 29 (1988), 869–879 | DOI | MR | Zbl

[22] Horváthy P. A., “The non-commutative Landau problem”, Ann. Physics, 299 (2002), 128–140, arXiv: hep-th/0201007 | DOI | MR | Zbl

[23] Horváthy P. A., “Exotic Galilean symmetry and non-commutative mechanics in mathematical and in condensed matter physics”, {T}alk given at International Conference on Noncommutative Geometry and Quantum Physics (January 4–10, 2006, Kolkata, India), arXiv: hep-th/0602133

[24] Horváthy P. A., Martina L., Stichel P. C., “Exotic {G}alilean symmetry and non-commutative mechanics”, SIGMA, 6 (2010), 060, 26 pp., arXiv: 1002.4772 | DOI | MR | Zbl

[25] Kerner R., “Generalization of the {K}aluza–{K}lein theory for an arbitrary non-abelian gauge group”, Ann. Inst. H. Poincaré Sect. A (N.S.), 9 (1968), 143–152 | MR

[26] Kosyakov B. P., “Exact solutions in the {Y}ang–{M}ills–{W}ong theory”, Phys. Rev. D, 57 (1998), 5032–5048, arXiv: hep-th/9902039 | DOI | MR

[27] Kosyakov B. P., Introduction to the classical theory of particles and fields, Springer-Verlag, Berlin, 2007 | MR | Zbl

[28] Linden N., Macfarlane A. J., van Holten J. W., “Particle motion in a {Y}ang–{M}ills field: {W}ong's equations and spin-{$\frac 12$} analogues”, Czechoslovak J. Phys., 46 (1996), 209–215, arXiv: hep-th/9512071 | DOI | MR

[29] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, 2nd ed., Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[30] Mathisson M., “Neue Mechanik materieller Systeme”, Acta Phys. Polon., 6 (1937), 163–200

[31] Mezincescu L., Star operation in quantum mechanics, arXiv: hep-th/0007046

[32] Nair V. P., Polychronakos A. P., “Quantum mechanics on the noncommutative plane and sphere”, Phys. Lett. B, 505 (2001), 267–274, arXiv: hep-th/0011172 | DOI | MR | Zbl

[33] Papapetrou A., “Spinning test-particles in general relativity, {I}”, Proc. Roy. Soc. London. Ser. A., 209 (1951), 248–258 | DOI | MR | Zbl

[34] Ramond P., Field theory: a modern primer, Frontiers in Physics, 51, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1981 | MR

[35] Rivasseau V., “Non-commutative renormalization”, Quantum Spaces, Prog. Math. Phys., 53, eds. B. Duplantier, V. Rivasseau, Birkhäuser, Basel, 2007, 19–107, arXiv: 0705.0705 | DOI | MR | Zbl

[36] Sikivie P., Weiss N., “Classical Yang–Mills theory in the presence of external sources”, Phys. Rev. D, 18 (1978), 3809–3821 | DOI

[37] Souriau J. M., Structure of dynamical systems. A symplectic view of physics, Progress in Mathematics, 149, Birkhäuser Boston, Inc., Boston, MA, 1997 | DOI | MR | Zbl

[38] Stern A., “Noncommutative point sources”, Phys. Rev. Lett., 100 (2008), 061601, 4 pp., arXiv: 0709.3831 | DOI | MR | Zbl

[39] Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rep., 378 (2003), 207–299, arXiv: hep-th/0109162 | DOI | MR | Zbl

[40] Thirring W., Classical mathematical physics. Dynamical systems and field theories, 3rd ed., Springer-Verlag, New York, 1997 | DOI | MR

[41] Vanhecke F. J., Sigaud C., da Silva A. R., “Noncommutative configuration space. Classical and quantum mechanical aspects”, Braz. J. Phys., 36 (2006), 194–207, arXiv: math-ph/0502003 | DOI

[42] Várilly J. C., Gracia-Bondía J. M., “Algebras of distributions suitable for phase-space quantum mechanics. {II}: {T}opologies on the {M}oyal algebra”, J. Math. Phys., 29 (1988), 880–887 | DOI | MR

[43] Vignes-Tourneret F., Renormalisation des theories de champs non commutatives, Ph. D. Thesis, Université Paris 11, 2006, arXiv: math-ph/0612014

[44] Wipf A. W., “Nonrelativistic {Y}ang–{M}ills particles in a spherically symmetric monopole field”, J. Phys. A: Math. Gen., 18 (1985), 2379–2384 | DOI | MR

[45] Wong S. K., “Field and particle equations for the classical Yang–Mills field and particles with isotopic spin”, Nuovo Cimento A, 65 (1970), 689–694 | DOI