Center of Twisted Graded Hecke Algebras for Homocyclic Groups
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We determine explicitly the center of the twisted graded Hecke algebras associated to homocyclic groups. Our results are a generalization of formulas by M. Douglas and B. Fiol in [J. High Energy Phys. 2005 (2005), no. 9, 053, 22 pages].
Keywords: twisted graded Hecke algebra; homocyclic group.
@article{SIGMA_2014_10_a97,
     author = {Wee Liang Gan and Matthew Highfield},
     title = {Center of {Twisted} {Graded} {Hecke} {Algebras} for {Homocyclic} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a97/}
}
TY  - JOUR
AU  - Wee Liang Gan
AU  - Matthew Highfield
TI  - Center of Twisted Graded Hecke Algebras for Homocyclic Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a97/
LA  - en
ID  - SIGMA_2014_10_a97
ER  - 
%0 Journal Article
%A Wee Liang Gan
%A Matthew Highfield
%T Center of Twisted Graded Hecke Algebras for Homocyclic Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a97/
%G en
%F SIGMA_2014_10_a97
Wee Liang Gan; Matthew Highfield. Center of Twisted Graded Hecke Algebras for Homocyclic Groups. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a97/

[1] C{ă}ld{ă}raru A., Giaquinto A., Witherspoon S., “Algebraic deformations arising from orbifolds with discrete torsion”, J. Pure Appl. Algebra, 187 (2004), 51–70, arXiv: math.KT/0210027 | DOI | MR

[2] Chmutova T., Twisted symplectic reflection algebras, arXiv: math.RT/0505653 | MR

[3] Douglas M. R., Fiol B., “D-branes and discrete torsion, II”, J. High Energy Phys., 2005:9 (2005), 053, 22 pp., arXiv: hep-th/9903031 | DOI | MR

[4] Drinfel'd V. G., “Degenerate affine {H}ecke algebras and {Y}angians”, Funct. Anal. Appl., 20 (1986), 58–60 | DOI | MR | Zbl

[5] Lusztig G., “Cuspidal local systems and graded {H}ecke algebras, I”, Inst. Hautes Études Sci. Publ. Math., 1988, 145–202 | DOI | MR | Zbl

[6] Lusztig G., “Affine {H}ecke algebras and their graded version”, J. Amer. Math. Soc., 2 (1989), 599–635 | DOI | MR | Zbl

[7] Ram A., Shepler A. V., “Classification of graded {H}ecke algebras for complex reflection groups”, Comment. Math. Helv., 78 (2003), 308–334, arXiv: math.GR/0209135 | DOI | MR | Zbl

[8] Walton C. M., On degenerations and deformations of {S}klyanin algebras, Ph. D. Thesis, University of Michigan, 2011

[9] Witherspoon S., “Skew derivations and deformations of a family of group crossed products”, Comm. Algebra, 34 (2006), 4187–4206, arXiv: math.RA/0506154 | DOI | MR | Zbl

[10] Witherspoon S., “Twisted graded {H}ecke algebras”, J. Algebra, 317 (2007), 30–42, arXiv: math.RT/0506152 | DOI | MR | Zbl