@article{SIGMA_2014_10_a96,
author = {Marco Matassa},
title = {Quantum {Dimension} and {Quantum} {Projective} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a96/}
}
Marco Matassa. Quantum Dimension and Quantum Projective Spaces. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a96/
[1] Brown K. A., Zhang J. J., “Dualising complexes and twisted {H}ochschild (co)homology for {N}oetherian {H}opf algebras”, J. Algebra, 320 (2008), 1814–1850, arXiv: math.RA/0603732 | DOI | MR | Zbl
[2] Carey A. L., Phillips J., Rennie A., “Twisted cyclic theory and an index theory for the gauge invariant {KMS} state on the {C}untz algebra {$O_n$}”, J. $K$-Theory, 6 (2010), 339–380, arXiv: 0801.4605 | DOI | MR | Zbl
[3] Carey A. L., Rennie A., Sedaev A., Sukochev F., “The {D}ixmier trace and asymptotics of zeta functions”, J. Funct. Anal., 249 (2007), 253–283, arXiv: math.OA/0611629 | DOI | MR | Zbl
[4] Carey A. L., Rennie A., Tong K., “Spectral flow invariants and twisted cyclic theory for the {H}aar state on {${\rm SU}_q(2)$}”, J. Geom. Phys., 59 (2009), 1431–1452, arXiv: 0802.0317 | DOI | MR | Zbl
[5] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[6] D'Andrea F., D{a̧}browski L., “Dirac operators on quantum projective spaces”, Comm. Math. Phys., 295 (2010), 731–790, arXiv: 0901.4735 | DOI | MR | Zbl
[7] D'Andrea F., D{a̧}browski L., Landi G., “The noncommutative geometry of the quantum projective plane”, Rev. Math. Phys., 20 (2008), 979–1006, arXiv: 0712.3401 | DOI | MR | Zbl
[8] D{a̧}browski L., Sitarz A., “Dirac operator on the standard {P}odleś quantum sphere”, Noncommutative Geometry and Quantum Groups ({W}arsaw, 2001), Banach Center Publ., 61, eds. P. M. Hajac, W. Pusz, Polish Acad. Sci., Warsaw, 2003, 49–58, arXiv: math.QA/0209048 | DOI
[9] Fuchs J., Affine {L}ie algebras and quantum groups. An introduction, with applications in conformal field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[10] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston Inc., Boston, MA, 2001 | MR | Zbl
[11] Hadfield T., “Twisted cyclic homology of all {P}odleś quantum spheres”, J. Geom. Phys., 57 (2007), 339–351, arXiv: math.QA/0405243 | DOI | MR | Zbl
[12] Hadfield T., Krähmer U., “Twisted homology of quantum {${\rm SL}(2)$}”, $K$-Theory, 34 (2005), 327–360, arXiv: math.QA/0405249 | DOI | MR | Zbl
[13] Heckenberger I., Kolb S., “The locally finite part of the dual coalgebra of quantized irreducible flag manifolds”, Proc. London Math. Soc., 89 (2004), 457–484, arXiv: math.QA/0301244 | DOI | MR | Zbl
[14] Kaad J., On modular semifinite index theory, arXiv: 1111.6546
[15] Kaad J., Senior R., “A twisted spectral triple for quantum {${\rm SU}(2)$}”, J. Geom. Phys., 62 (2012), 731–739, arXiv: 1109.2326 | DOI | MR | Zbl
[16] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[17] Krähmer U., “Dirac operators on quantum flag manifolds”, Lett. Math. Phys., 67 (2004), 49–59, arXiv: math.QA/0305071 | DOI | MR
[18] Krähmer U., “On the {H}ochschild (co)homology of quantum homogeneous spaces”, Israel J. Math., 189 (2012), 237–266, arXiv: 0806.0267 | DOI | MR
[19] Krähmer U., Tucker-Simmons M., On the Dolbeault–Dirac operator of quantized symmetric spaces, arXiv: 1307.7106
[20] Krähmer U., Wagner E., “A residue formula for the fundamental {H}ochschild class on the {P}odleś sphere”, J. $K$-Theory, 12 (2013), 257–271, arXiv: 1008.1830 | DOI | MR
[21] Matassa M., Non-commutative integration, zeta functions and the Haar state for ${\rm SU}_{q}(2)$, arXiv: 1310.7477
[22] Neshveyev S., Tuset L., “A local index formula for the quantum sphere”, Comm. Math. Phys., 254 (2005), 323–341, arXiv: math.QA/0309275 | DOI | MR | Zbl