Invariant Poisson Realizations and the Averaging of Dirac Structures
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe an averaging procedure on a Dirac manifold, with respect to a class of compatible actions of a compact Lie group. Some averaging theorems on the existence of invariant realizations of Poisson structures around (singular) symplectic leaves are derived. We show that the construction of coupling Dirac structures (invariant with respect to locally Hamiltonian group actions) on a Poisson foliation is related with a special class of exact gauge transformations.
Keywords: Poisson structures; Dirac structures; geometric data; averaging operators.
@article{SIGMA_2014_10_a95,
     author = {Jos\'e A. Vallejo and Yurii Vorobiev},
     title = {Invariant {Poisson} {Realizations} and the {Averaging} of {Dirac} {Structures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a95/}
}
TY  - JOUR
AU  - José A. Vallejo
AU  - Yurii Vorobiev
TI  - Invariant Poisson Realizations and the Averaging of Dirac Structures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a95/
LA  - en
ID  - SIGMA_2014_10_a95
ER  - 
%0 Journal Article
%A José A. Vallejo
%A Yurii Vorobiev
%T Invariant Poisson Realizations and the Averaging of Dirac Structures
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a95/
%G en
%F SIGMA_2014_10_a95
José A. Vallejo; Yurii Vorobiev. Invariant Poisson Realizations and the Averaging of Dirac Structures. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a95/

[1] Avendaño-Camacho M., Vallejo J. A., Vorobiev Yu., “Higher order corrections to adiabatic invariants of generalized slow-fast {H}amiltonian systems”, J. Math. Phys., 54 (2013), 082704, 15 pp., arXiv: 1305.3974 | DOI | MR | Zbl

[2] Brahic O., Fernandes R. L., “Poisson fibrations and fibered symplectic groupoids”, Poisson geometry in mathematics and physics, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, 2008, 41–59, arXiv: math.DG/0702258 | DOI | MR | Zbl

[3] Brahic O., Fernandes R. L., Integrability and reduction of Hamiltonian actions on Dirac manifolds, arXiv: 1311.7398 | MR

[4] Bursztyn H., “On gauge transformations of {P}oisson structures”, Quantum Field Theory and Noncommutative Geometry, Lecture Notes in Phys., 662, Springer, Berlin, 2005, 89–112 | DOI | MR | Zbl

[5] Bursztyn H., Radko O., “Gauge equivalence of {D}irac structures and symplectic groupoids”, Ann. Inst. Fourier (Grenoble), 53 (2003), 309–337, arXiv: math.SG/0202099 | DOI | MR | Zbl

[6] Chavel I., Riemannian geometry. A modern introduction, Cambridge Studies in Advanced Mathematics, 98, 2nd ed., Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl

[7] Courant T. J., “Dirac manifolds”, Trans. Amer. Math. Soc., 319 (1990), 631–661 | DOI | MR | Zbl

[8] Courant T. J., Weinstein A., “Beyond {P}oisson structures”, Action Hamiltoniennes de Groupes. {T}roisième Théorème de {L}ie ({L}yon, 1986), Travaux en Cours, 27, Hermann, Paris, 1988, 39–49 | MR

[9] Crainic M., M{ă}rcu{ţ} I., “A normal form theorem around symplectic leaves”, J. Differential Geom., 92 (2012), 417–461, arXiv: 1009.2090 | MR | Zbl

[10] Davis B. L., Wade A., “Dirac structures and gauge symmetries of phase spaces”, Rend. Semin. Mat. Univ. Politec. Torino, 67 (2009), 123–135 | MR | Zbl

[11] Dufour J.-P., Wade A., “On the local structure of {D}irac manifolds”, Compos. Math., 144 (2008), 774–786, arXiv: math.SG/0405257 | DOI | MR | Zbl

[12] Frejlich P., Mǎrcuţ I., Poisson transversals I. The normal form theorem, arXiv: 1306.6055

[13] Jotz M., Ratiu T. S., “Induced {D}irac structures on isotropy-type manifolds”, Transform. Groups, 16 (2011), 175–191, arXiv: 1008.2280 | DOI | MR | Zbl

[14] Jotz M., Ratiu T. S., Śniatycki J., “Singular reduction of {D}irac structures”, Trans. Amer. Math. Soc., 363 (2011), 2967–3013, arXiv: 0901.3062 | DOI | MR | Zbl

[15] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | MR

[16] Marsden J., Montgomery R., Ratiu T., Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88, 1990, iv+110 pp. | DOI | MR

[17] Miranda E., Zung N. T., “A note on equivariant normal forms of {P}oisson structures”, Math. Res. Lett., 13 (2006), 1001–1012, arXiv: math.SG/0510523 | DOI | MR | Zbl

[18] Ševera P., Weinstein A., “Poisson geometry with a 3-form background”, Progr. Theoret. Phys. Suppl., 144 (2001), 145–154, arXiv: math.SG/0107133 | DOI | MR

[19] Śniatycki J., Differential geometry of singular spaces and reduction of symmetry, New Mathematical Monographs, 23, Cambridge University Press, Cambridge, 2013 | DOI | MR

[20] Stefan P., “Accessible sets, orbits, and foliations with singularities”, Proc. London Math. Soc., 29 (1974), 699–713 | DOI | MR | Zbl

[21] Sussmann H. J., “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl

[22] Vaisman I., Lectures on the geometry of {P}oisson manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994 | DOI | MR | Zbl

[23] Vaisman I., “Coupling {P}oisson and {J}acobi structures on foliated manifolds”, Int. J. Geom. Methods Mod. Phys., 1 (2004), 607–637, arXiv: math.SG/0402361 | DOI | MR | Zbl

[24] Vaisman I., “Foliation-coupling {D}irac structures”, J. Geom. Phys., 56 (2006), 917–938, arXiv: math.SG/0412318 | DOI | MR | Zbl

[25] Vorobjev Yu., “Coupling tensors and {P}oisson geometry near a single symplectic leaf”, Lie Algebroids and Related Topics in Differential Geometry ({W}arsaw, 2000), Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, 249–274, arXiv: math.SG/0008162 | MR | Zbl

[26] Vorobjev Yu., “Poisson equivalence over a symplectic leaf”, Quantum algebras and {P}oisson geometry in mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 216, Amer. Math. Soc., Providence, RI, 2005, 241–277, arXiv: math.SG/0503628 | MR | Zbl

[27] Vorobiev Yu., “Averaging of {P}oisson structures”, Geometric Methods in Physics, AIP Conf. Proc., 1079, Amer. Inst. Phys., Melville, NY, 2008, 235–240 | DOI | MR | Zbl

[28] Vorobiev Yu., “The averaging in Hamiltonian systems on slow-fast phase spaces with $\mathbb{S}^{1}$ symmetry”, Phys. Atomic Nuclei, 74 (2011), 1770–1774 | DOI

[29] Wade A., “Poisson fiber bundles and coupling {D}irac structures”, Ann. Global Anal. Geom., 33 (2008), 207–217, arXiv: math.SG/0507594 | DOI | MR | Zbl