@article{SIGMA_2014_10_a95,
author = {Jos\'e A. Vallejo and Yurii Vorobiev},
title = {Invariant {Poisson} {Realizations} and the {Averaging} of {Dirac} {Structures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a95/}
}
TY - JOUR AU - José A. Vallejo AU - Yurii Vorobiev TI - Invariant Poisson Realizations and the Averaging of Dirac Structures JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a95/ LA - en ID - SIGMA_2014_10_a95 ER -
José A. Vallejo; Yurii Vorobiev. Invariant Poisson Realizations and the Averaging of Dirac Structures. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a95/
[1] Avendaño-Camacho M., Vallejo J. A., Vorobiev Yu., “Higher order corrections to adiabatic invariants of generalized slow-fast {H}amiltonian systems”, J. Math. Phys., 54 (2013), 082704, 15 pp., arXiv: 1305.3974 | DOI | MR | Zbl
[2] Brahic O., Fernandes R. L., “Poisson fibrations and fibered symplectic groupoids”, Poisson geometry in mathematics and physics, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, 2008, 41–59, arXiv: math.DG/0702258 | DOI | MR | Zbl
[3] Brahic O., Fernandes R. L., Integrability and reduction of Hamiltonian actions on Dirac manifolds, arXiv: 1311.7398 | MR
[4] Bursztyn H., “On gauge transformations of {P}oisson structures”, Quantum Field Theory and Noncommutative Geometry, Lecture Notes in Phys., 662, Springer, Berlin, 2005, 89–112 | DOI | MR | Zbl
[5] Bursztyn H., Radko O., “Gauge equivalence of {D}irac structures and symplectic groupoids”, Ann. Inst. Fourier (Grenoble), 53 (2003), 309–337, arXiv: math.SG/0202099 | DOI | MR | Zbl
[6] Chavel I., Riemannian geometry. A modern introduction, Cambridge Studies in Advanced Mathematics, 98, 2nd ed., Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl
[7] Courant T. J., “Dirac manifolds”, Trans. Amer. Math. Soc., 319 (1990), 631–661 | DOI | MR | Zbl
[8] Courant T. J., Weinstein A., “Beyond {P}oisson structures”, Action Hamiltoniennes de Groupes. {T}roisième Théorème de {L}ie ({L}yon, 1986), Travaux en Cours, 27, Hermann, Paris, 1988, 39–49 | MR
[9] Crainic M., M{ă}rcu{ţ} I., “A normal form theorem around symplectic leaves”, J. Differential Geom., 92 (2012), 417–461, arXiv: 1009.2090 | MR | Zbl
[10] Davis B. L., Wade A., “Dirac structures and gauge symmetries of phase spaces”, Rend. Semin. Mat. Univ. Politec. Torino, 67 (2009), 123–135 | MR | Zbl
[11] Dufour J.-P., Wade A., “On the local structure of {D}irac manifolds”, Compos. Math., 144 (2008), 774–786, arXiv: math.SG/0405257 | DOI | MR | Zbl
[12] Frejlich P., Mǎrcuţ I., Poisson transversals I. The normal form theorem, arXiv: 1306.6055
[13] Jotz M., Ratiu T. S., “Induced {D}irac structures on isotropy-type manifolds”, Transform. Groups, 16 (2011), 175–191, arXiv: 1008.2280 | DOI | MR | Zbl
[14] Jotz M., Ratiu T. S., Śniatycki J., “Singular reduction of {D}irac structures”, Trans. Amer. Math. Soc., 363 (2011), 2967–3013, arXiv: 0901.3062 | DOI | MR | Zbl
[15] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | MR
[16] Marsden J., Montgomery R., Ratiu T., Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88, 1990, iv+110 pp. | DOI | MR
[17] Miranda E., Zung N. T., “A note on equivariant normal forms of {P}oisson structures”, Math. Res. Lett., 13 (2006), 1001–1012, arXiv: math.SG/0510523 | DOI | MR | Zbl
[18] Ševera P., Weinstein A., “Poisson geometry with a 3-form background”, Progr. Theoret. Phys. Suppl., 144 (2001), 145–154, arXiv: math.SG/0107133 | DOI | MR
[19] Śniatycki J., Differential geometry of singular spaces and reduction of symmetry, New Mathematical Monographs, 23, Cambridge University Press, Cambridge, 2013 | DOI | MR
[20] Stefan P., “Accessible sets, orbits, and foliations with singularities”, Proc. London Math. Soc., 29 (1974), 699–713 | DOI | MR | Zbl
[21] Sussmann H. J., “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl
[22] Vaisman I., Lectures on the geometry of {P}oisson manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994 | DOI | MR | Zbl
[23] Vaisman I., “Coupling {P}oisson and {J}acobi structures on foliated manifolds”, Int. J. Geom. Methods Mod. Phys., 1 (2004), 607–637, arXiv: math.SG/0402361 | DOI | MR | Zbl
[24] Vaisman I., “Foliation-coupling {D}irac structures”, J. Geom. Phys., 56 (2006), 917–938, arXiv: math.SG/0412318 | DOI | MR | Zbl
[25] Vorobjev Yu., “Coupling tensors and {P}oisson geometry near a single symplectic leaf”, Lie Algebroids and Related Topics in Differential Geometry ({W}arsaw, 2000), Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, 249–274, arXiv: math.SG/0008162 | MR | Zbl
[26] Vorobjev Yu., “Poisson equivalence over a symplectic leaf”, Quantum algebras and {P}oisson geometry in mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 216, Amer. Math. Soc., Providence, RI, 2005, 241–277, arXiv: math.SG/0503628 | MR | Zbl
[27] Vorobiev Yu., “Averaging of {P}oisson structures”, Geometric Methods in Physics, AIP Conf. Proc., 1079, Amer. Inst. Phys., Melville, NY, 2008, 235–240 | DOI | MR | Zbl
[28] Vorobiev Yu., “The averaging in Hamiltonian systems on slow-fast phase spaces with $\mathbb{S}^{1}$ symmetry”, Phys. Atomic Nuclei, 74 (2011), 1770–1774 | DOI
[29] Wade A., “Poisson fiber bundles and coupling {D}irac structures”, Ann. Global Anal. Geom., 33 (2008), 207–217, arXiv: math.SG/0507594 | DOI | MR | Zbl