Algebraic Geometry of Matrix Product States
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We quantify the representational power of matrix product states (MPS) for entangled qubit systems by giving polynomial expressions in a pure quantum state's amplitudes which hold if and only if the state is a translation invariant matrix product state or a limit of such states. For systems with few qubits, we give these equations explicitly, considering both periodic and open boundary conditions. Using the classical theory of trace varieties and trace algebras, we explain the relationship between MPS and hidden Markov models and exploit this relationship to derive useful parameterizations of MPS. We make four conjectures on the identifiability of MPS parameters.
Keywords: matrix product states; trace varieties; trace algebras; quantum tomography.
@article{SIGMA_2014_10_a94,
     author = {Andrew Critch and Jason Morton},
     title = {Algebraic {Geometry} of {Matrix} {Product} {States}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a94/}
}
TY  - JOUR
AU  - Andrew Critch
AU  - Jason Morton
TI  - Algebraic Geometry of Matrix Product States
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a94/
LA  - en
ID  - SIGMA_2014_10_a94
ER  - 
%0 Journal Article
%A Andrew Critch
%A Jason Morton
%T Algebraic Geometry of Matrix Product States
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a94/
%G en
%F SIGMA_2014_10_a94
Andrew Critch; Jason Morton. Algebraic Geometry of Matrix Product States. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a94/

[1] Biamonte J., Bergholm V., Lanzagorta M., “Tensor network methods for invariant theory”, J. Phys. A: Math. Theor., 46 (2013), 475301, 19 pp., arXiv: 1209.0631 | DOI | MR | Zbl

[2] Bray N., Morton J., “Equations defining hidden {M}arkov models”, Algebraic Statistics for Computational Biology, Cambridge University Press, New York, 2005, 237–249 | DOI | MR

[3] Cox D., Little J., O'Shea D., Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, 2nd ed., Springer-Verlag, New York, 1997 | MR | Zbl

[4] Critch A., “Binary hidden {M}arkov models and varieties”, J. Algebr. Stat., 4 (2013), 1–30, arXiv: 1206.0500 | MR

[5] Eisenbud D., Grayson D. R., Stillman M., Sturmfels B. (eds.), Computations in algebraic geometry with {M}acaulay 2, Algorithms and Computation in Mathematics, 8, Springer-Verlag, Berlin, 2002 | DOI

[6] Erickson R. V., “Functions of {M}arkov chains”, Ann. Math. Statist., 41 (1970), 843–850 | DOI | MR | Zbl

[7] Grayson D. R., Stillman M. E. http://www.math.uiuc.edu/Macaulay2/

[8] Greuel G.-M., Pfister G., A singular introduction to commutative algebra, Springer-Verlag, Berlin, 2008 | DOI | MR

[9] Leron U., “Trace identities and polynomial identities of {$n\times n$} matrices”, J. Algebra, 42 (1976), 369–377 | DOI | MR | Zbl

[10] Morton J., “Tensor networks in algebraic geometry and statistics”, {L}ecture at Networking Tensor Networks (Benasque, Spain, 2012) http://benasque.org/2012network/talks_contr/106_morton.pdf

[11] Pachter L., Sturmfels B., “Tropical geometry of statistical models”, Proc. Natl. Acad. Sci. USA, 101 (2004), 16132–16137, arXiv: q-bio/0311009 | DOI | MR | Zbl

[12] Perez-Garcia D., Verstraete F., Wolf M. M., Cirac J. I., “Matrix product state representations”, Quantum Inf. Comput., 7 (2007), 401–430, arXiv: quant-ph/0608197 | MR | Zbl

[13] Procesi C., “The invariant theory of {$n\times n$} matrices”, Adv. Math., 19 (1976), 306–381 | DOI | MR | Zbl

[14] Sibirskii K. S., “Algebraic invariants of a system of matrices”, Sib. Math. J., 9 (1968), 115–124 | DOI | MR

[15] A000031 Number of $n$-bead necklaces with 2 colors when turning over is not allowed, , The on-line encyclopedia of integer sequences (OEIS) http://oeis.org

[16] Turner J., Morton J., The invariant ring of $m$ matrices under the adjoint action by a subgroup of a product of general linear groups, arXiv: 1310.0370

[17] Verstraete F., Cirac J., “Matrix product states represent ground states faithfully”, Phys. Rev. B, 73 (2006), 094423, 8 pp., arXiv: cond-mat/0505140 | DOI

[18] Vidyasagar M., “The complete realization problem for hidden {M}arkov models: a survey and some new results”, Math. Control Signals Systems, 23 (2011), 1–65 | DOI | MR | Zbl