@article{SIGMA_2014_10_a94,
author = {Andrew Critch and Jason Morton},
title = {Algebraic {Geometry} of {Matrix} {Product} {States}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a94/}
}
Andrew Critch; Jason Morton. Algebraic Geometry of Matrix Product States. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a94/
[1] Biamonte J., Bergholm V., Lanzagorta M., “Tensor network methods for invariant theory”, J. Phys. A: Math. Theor., 46 (2013), 475301, 19 pp., arXiv: 1209.0631 | DOI | MR | Zbl
[2] Bray N., Morton J., “Equations defining hidden {M}arkov models”, Algebraic Statistics for Computational Biology, Cambridge University Press, New York, 2005, 237–249 | DOI | MR
[3] Cox D., Little J., O'Shea D., Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, 2nd ed., Springer-Verlag, New York, 1997 | MR | Zbl
[4] Critch A., “Binary hidden {M}arkov models and varieties”, J. Algebr. Stat., 4 (2013), 1–30, arXiv: 1206.0500 | MR
[5] Eisenbud D., Grayson D. R., Stillman M., Sturmfels B. (eds.), Computations in algebraic geometry with {M}acaulay 2, Algorithms and Computation in Mathematics, 8, Springer-Verlag, Berlin, 2002 | DOI
[6] Erickson R. V., “Functions of {M}arkov chains”, Ann. Math. Statist., 41 (1970), 843–850 | DOI | MR | Zbl
[7] Grayson D. R., Stillman M. E. http://www.math.uiuc.edu/Macaulay2/
[8] Greuel G.-M., Pfister G., A singular introduction to commutative algebra, Springer-Verlag, Berlin, 2008 | DOI | MR
[9] Leron U., “Trace identities and polynomial identities of {$n\times n$} matrices”, J. Algebra, 42 (1976), 369–377 | DOI | MR | Zbl
[10] Morton J., “Tensor networks in algebraic geometry and statistics”, {L}ecture at Networking Tensor Networks (Benasque, Spain, 2012) http://benasque.org/2012network/talks_contr/106_morton.pdf
[11] Pachter L., Sturmfels B., “Tropical geometry of statistical models”, Proc. Natl. Acad. Sci. USA, 101 (2004), 16132–16137, arXiv: q-bio/0311009 | DOI | MR | Zbl
[12] Perez-Garcia D., Verstraete F., Wolf M. M., Cirac J. I., “Matrix product state representations”, Quantum Inf. Comput., 7 (2007), 401–430, arXiv: quant-ph/0608197 | MR | Zbl
[13] Procesi C., “The invariant theory of {$n\times n$} matrices”, Adv. Math., 19 (1976), 306–381 | DOI | MR | Zbl
[14] Sibirskii K. S., “Algebraic invariants of a system of matrices”, Sib. Math. J., 9 (1968), 115–124 | DOI | MR
[15] A000031 Number of $n$-bead necklaces with 2 colors when turning over is not allowed, , The on-line encyclopedia of integer sequences (OEIS) http://oeis.org
[16] Turner J., Morton J., The invariant ring of $m$ matrices under the adjoint action by a subgroup of a product of general linear groups, arXiv: 1310.0370
[17] Verstraete F., Cirac J., “Matrix product states represent ground states faithfully”, Phys. Rev. B, 73 (2006), 094423, 8 pp., arXiv: cond-mat/0505140 | DOI
[18] Vidyasagar M., “The complete realization problem for hidden {M}arkov models: a survey and some new results”, Math. Control Signals Systems, 23 (2011), 1–65 | DOI | MR | Zbl