@article{SIGMA_2014_10_a92,
author = {Mohammad Hassanzadeh and Dan Kucerovsky and Bahram Rangipour},
title = {Generalized {Coefficients} for {Hopf} {Cyclic} {Cohomology}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a92/}
}
TY - JOUR AU - Mohammad Hassanzadeh AU - Dan Kucerovsky AU - Bahram Rangipour TI - Generalized Coefficients for Hopf Cyclic Cohomology JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a92/ LA - en ID - SIGMA_2014_10_a92 ER -
Mohammad Hassanzadeh; Dan Kucerovsky; Bahram Rangipour. Generalized Coefficients for Hopf Cyclic Cohomology. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a92/
[1] Böhm G., {Ş}tefan D., “({C}o)cyclic (co)homology of bialgebroids: an approach via (co)monads”, Comm. Math. Phys., 282 (2008), 239–286, arXiv: 0705.3190 | DOI | MR
[2] Connes A., “Cohomologie cyclique et foncteurs {${\rm Ext}^n$}”, C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 953–958 | MR | Zbl
[3] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[4] Connes A., Moscovici H., “Hopf algebras, cyclic cohomology and the transverse index theorem”, Comm. Math. Phys., 198 (1998), 199–246, arXiv: math.DG/9806109 | DOI | MR | Zbl
[5] Hajac P. M., Khalkhali M., Rangipour B., Sommerhäuser Y., “Hopf-cyclic homology and cohomology with coefficients”, C. R. Math. Acad. Sci. Paris, 338 (2004), 667–672, arXiv: math.KT/0306288 | DOI | MR | Zbl
[6] Hajac P. M., Khalkhali M., Rangipour B., Sommerhäuser Y., “Stable anti-{Y}etter–{D}rinfeld modules”, C. R. Math. Acad. Sci. Paris, 338 (2004), 587–590, arXiv: math.QA/0405005 | DOI | MR | Zbl
[7] Jara P., {Ş}tefan D., “Hopf-cyclic homology and relative cyclic homology of {H}opf–{G}alois extensions”, Proc. London Math. Soc., 93 (2006), 138–174, arXiv: math.KT/0307099 | DOI | MR | Zbl
[8] Kaygun A., “Bialgebra cyclic homology with coefficients”, $K$-Theory, 34 (2005), 151–194, arXiv: math.KT/0409191 | DOI | MR | Zbl
[9] Kaygun A., “Products in {H}opf-cyclic cohomology”, Homology, Homotopy Appl., 10 (2008), 115–133, arXiv: 0710.2559 | DOI | MR | Zbl
[10] Khalkhali M., Rangipour B., “Cup products in {H}opf-cyclic cohomology”, C. R. Math. Acad. Sci. Paris, 340 (2005), 9–14, arXiv: math.QA/0411003 | DOI | MR | Zbl
[11] Kowalzig N., Krähmer U., “Cyclic structures in algebraic (co)homology theories”, Homology Homotopy Appl., 13 (2011), 297–318, arXiv: 1011.3471 | DOI | MR | Zbl
[12] Loday J. L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[13] Moscovici H., Rangipour B., “Hopf algebras of primitive {L}ie pseudogroups and {H}opf cyclic cohomology”, Adv. Math., 220 (2009), 706–790, arXiv: 0803.1320 | DOI | MR | Zbl
[14] Rangipour B., “Cup products in {H}opf cyclic cohomology via cyclic modules”, Homology, Homotopy Appl., 10 (2008), 273–286, arXiv: 0710.2623 | DOI | MR | Zbl
[15] Rangipour B., Sütlü S., “S{AYD} modules over {L}ie–{H}opf algebras”, Comm. Math. Phys., 316 (2012), 199–236, arXiv: 1108.6101 | DOI | MR | Zbl
[16] Staic M. D., “A note on anti-{Y}etter–{D}rinfeld modules”, Hopf algebras and generalizations, Contemp. Math., 441, Amer. Math. Soc., Providence, RI, 2007, 149–153 | DOI | MR | Zbl