Generalized Coefficients for Hopf Cyclic Cohomology
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter–Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized SAYD condition depending on both the Hopf algebra and the (co)algebra in question. Some examples are introduced to show that these three categories are different. It is shown that all components of Hopf cyclic cohomology work well with the new coefficients we have defined.
Keywords: cyclic cohomology; Hopf algebras; noncommutative geometry.
@article{SIGMA_2014_10_a92,
     author = {Mohammad Hassanzadeh and Dan Kucerovsky and Bahram Rangipour},
     title = {Generalized {Coefficients} for {Hopf} {Cyclic} {Cohomology}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a92/}
}
TY  - JOUR
AU  - Mohammad Hassanzadeh
AU  - Dan Kucerovsky
AU  - Bahram Rangipour
TI  - Generalized Coefficients for Hopf Cyclic Cohomology
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a92/
LA  - en
ID  - SIGMA_2014_10_a92
ER  - 
%0 Journal Article
%A Mohammad Hassanzadeh
%A Dan Kucerovsky
%A Bahram Rangipour
%T Generalized Coefficients for Hopf Cyclic Cohomology
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a92/
%G en
%F SIGMA_2014_10_a92
Mohammad Hassanzadeh; Dan Kucerovsky; Bahram Rangipour. Generalized Coefficients for Hopf Cyclic Cohomology. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a92/

[1] Böhm G., {Ş}tefan D., “({C}o)cyclic (co)homology of bialgebroids: an approach via (co)monads”, Comm. Math. Phys., 282 (2008), 239–286, arXiv: 0705.3190 | DOI | MR

[2] Connes A., “Cohomologie cyclique et foncteurs {${\rm Ext}^n$}”, C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 953–958 | MR | Zbl

[3] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[4] Connes A., Moscovici H., “Hopf algebras, cyclic cohomology and the transverse index theorem”, Comm. Math. Phys., 198 (1998), 199–246, arXiv: math.DG/9806109 | DOI | MR | Zbl

[5] Hajac P. M., Khalkhali M., Rangipour B., Sommerhäuser Y., “Hopf-cyclic homology and cohomology with coefficients”, C. R. Math. Acad. Sci. Paris, 338 (2004), 667–672, arXiv: math.KT/0306288 | DOI | MR | Zbl

[6] Hajac P. M., Khalkhali M., Rangipour B., Sommerhäuser Y., “Stable anti-{Y}etter–{D}rinfeld modules”, C. R. Math. Acad. Sci. Paris, 338 (2004), 587–590, arXiv: math.QA/0405005 | DOI | MR | Zbl

[7] Jara P., {Ş}tefan D., “Hopf-cyclic homology and relative cyclic homology of {H}opf–{G}alois extensions”, Proc. London Math. Soc., 93 (2006), 138–174, arXiv: math.KT/0307099 | DOI | MR | Zbl

[8] Kaygun A., “Bialgebra cyclic homology with coefficients”, $K$-Theory, 34 (2005), 151–194, arXiv: math.KT/0409191 | DOI | MR | Zbl

[9] Kaygun A., “Products in {H}opf-cyclic cohomology”, Homology, Homotopy Appl., 10 (2008), 115–133, arXiv: 0710.2559 | DOI | MR | Zbl

[10] Khalkhali M., Rangipour B., “Cup products in {H}opf-cyclic cohomology”, C. R. Math. Acad. Sci. Paris, 340 (2005), 9–14, arXiv: math.QA/0411003 | DOI | MR | Zbl

[11] Kowalzig N., Krähmer U., “Cyclic structures in algebraic (co)homology theories”, Homology Homotopy Appl., 13 (2011), 297–318, arXiv: 1011.3471 | DOI | MR | Zbl

[12] Loday J. L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[13] Moscovici H., Rangipour B., “Hopf algebras of primitive {L}ie pseudogroups and {H}opf cyclic cohomology”, Adv. Math., 220 (2009), 706–790, arXiv: 0803.1320 | DOI | MR | Zbl

[14] Rangipour B., “Cup products in {H}opf cyclic cohomology via cyclic modules”, Homology, Homotopy Appl., 10 (2008), 273–286, arXiv: 0710.2623 | DOI | MR | Zbl

[15] Rangipour B., Sütlü S., “S{AYD} modules over {L}ie–{H}opf algebras”, Comm. Math. Phys., 316 (2012), 199–236, arXiv: 1108.6101 | DOI | MR | Zbl

[16] Staic M. D., “A note on anti-{Y}etter–{D}rinfeld modules”, Hopf algebras and generalizations, Contemp. Math., 441, Amer. Math. Soc., Providence, RI, 2007, 149–153 | DOI | MR | Zbl