@article{SIGMA_2014_10_a90,
author = {Adam Hlav\'a\v{c} and Michal Marvan},
title = {A {Reciprocal} {Transformation} for the {Constant} {Astigmatism} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a90/}
}
Adam Hlaváč; Michal Marvan. A Reciprocal Transformation for the Constant Astigmatism Equation. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a90/
[1] Bäcklund A. V., “Om ytor med konstant negativ krökning”, Lunds Univ. Årsskrift, 19 (1883), 1–48
[2] Baran H., Marvan M., “On integrability of {W}eingarten surfaces: a forgotten class”, J. Phys. A: Math. Theor., 42 (2009), 404007, 16 pp., arXiv: 1002.0989 | DOI | MR | Zbl
[3] Baran H., Marvan M., “Classification of integrable {W}eingarten surfaces possessing an {$\mathfrak{sl}(2)$}-valued zero curvature representation”, Nonlinearity, 23 (2010), 2577–2597, arXiv: 1002.0992 | DOI | MR | Zbl
[4] Bianchi L., “Ricerche sulle superficie elicoidali e sulle superficie a curvatura costante”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1879), 285–341 | MR
[5] Bianchi L., Lezioni di Geometria Differenziale, v. I, E. Spoerri, Pisa, 1902 | Zbl
[6] Bianchi L., Lezioni di Geometria Differenziale, v. II, E. Spoerri, Pisa, 1903
[7] Bocharov A. V., Chetverikov V. N., Duzhin S. V., Khor'kova N. G., Krasil'shchik I. S., Samokhin A. V., Torkhov Yu. N., Verbovetsky A. M., Vinogradov A. M., Symmetries and conservation laws for differential equations of mathematical physics, Translations of Mathematical Monographs, 182, Amer. Math. Soc., Providence, RI, 1999 | MR
[8] Ferapontov E. V., “Reciprocal transformations and their invariants”, Differ. Equ., 25 (1989), 898–905 | MR | Zbl
[9] Ferapontov E. V., “Autotransformations with respect to the solution, and hydrodynamic symmetries”, Differ. Equ., 27 (1991), 885–895 | MR | Zbl
[10] Ferapontov E. V., Rogers C., Schief W. K., “Reciprocal transformations of two-component hyperbolic systems and their invariants”, J. Math. Anal. Appl., 228 (1998), 365–376 | DOI | MR | Zbl
[11] Ganchev G., Mihova V., “On the invariant theory of {W}eingarten surfaces in {E}uclidean space”, J. Phys. A: Math. Theor., 43 (2010), 405210, 27 pp., arXiv: 0802.2191 | DOI | MR | Zbl
[12] Goursat E., Le Probléme de Bäcklund, Gauthier-Villars, Paris, 1925 | Zbl
[13] Hlaváč A., Marvan M., “Another integrable case in two-dimensional plasticity”, J. Phys. A: Math. Theor., 46 (2013), 045203, 15 pp. | DOI | MR | Zbl
[14] Hlaváč A., Marvan M., “On Lipschitz solutions of the constant astigmatism equation”, J. Geom. Phys. (to appear) | DOI | MR
[15] Hoenselaers C. A., Miccichè S., “Transcendental solutions of the sine-{G}ordon equation”, Bäcklund and {D}arboux Transformations. {T}he Geometry of Solitons (Halifax, NS, 1999), CRM Proc. Lecture Notes, 29, Amer. Math. Soc., Providence, RI, 2001, 261–271 | MR | Zbl
[16] Kingston J. G., Rogers C., “Reciprocal {B}äcklund transformations of conservation laws”, Phys. Lett. A, 92 (1982), 261–264 | DOI | MR
[17] von Lilienthal R., “Bemerkung über diejenigen {F}lächen bei denen die {D}ifferenz der {H}auptkrümmungsradien constant ist”, Acta Math., 11 (1887), 391–394 | DOI | MR
[18] Lipschitz R., “Zur {T}heorie der krummen {O}berflächen”, Acta Math., 10 (1887), 131–136 | DOI | MR
[19] Manganaro N., Pavlov M. V., “The constant astigmatism equation. {N}ew exact solution”, J. Phys. A: Math. Theor., 47 (2014), 075203, 8 pp., arXiv: 1311.1136 | DOI | MR | Zbl
[20] Marvan M., “Some local properties of {B}äcklund transformations”, Acta Appl. Math., 54 (1998), 1–25 | DOI | MR | Zbl
[21] Pavlov M. V., Zykov S. A., “Lagrangian and {H}amiltonian structures for the constant astigmatism equation”, J. Phys. A: Math. Theor., 46 (2013), 395203, 6 pp., arXiv: 1212.6239 | DOI | MR | Zbl
[22] Polyanin A. D., Zaitsev V. F., Handbook of exact solutions for ordinary differential equations, 2nd ed., Chapman Hall/CRC, Boca Raton, FL, 2003 | MR
[23] Prus R., Sym A., “Rectilinear congruences and {B}äcklund transformations: roots of the soliton theory”, Nonlinearity Geometry, Luigi Bianchi Days ({W}arsaw, 1995), eds. D. Wójcik, J. Cieśliński, Polish Scientific Publishers, Warsaw, 1998, 25–36 | MR | Zbl
[24] Ribaucour A., “Note sur les développées des surfaces”, C. R. Math. Acad. Sci. Paris, 74 (1872), 1399–1403
[25] Rogers C., Schief W. K., Bäcklund and {D}arboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[26] Rogers C., Schief W. K., Szereszewski A., “Loop soliton interaction in an integrable nonlinear telegraphy model: reciprocal and {B}äcklund transformations”, J. Phys. A: Math. Theor., 43 (2010), 385210, 16 pp. | DOI | MR | Zbl
[27] Rogers C., Shadwick W. F., Bäcklund transformations and their applications, Mathematics in Science and Engineering, 161, Academic Press Inc., New York–London, 1982 | MR | Zbl
[28] Rogers C., Wong P., “On reciprocal {B}äcklund transformations of inverse scattering schemes”, Phys. Scripta, 30 (1984), 10–14 | DOI | MR | Zbl
[29] Sadowsky M. A., “Equiareal pattern of stress trajectories in plane plastic strain”, J. Appl. Mech., 8 (1941), A74–A76 | MR
[30] Sadowsky M. A., “Equiareal patterns”, Amer. Math. Monthly, 50 (1943), 35–40 | DOI | MR | Zbl
[31] Weatherburn C. E., Differential geometry of three dimensions, Cambridge University Press, Cambridge, 1927 | Zbl