@article{SIGMA_2014_10_a9,
author = {Nicolas Franco and Micha{\l} Eckstein},
title = {Exploring the {Causal} {Structures} of {Almost} {Commutative} {Geometries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a9/}
}
Nicolas Franco; Michał Eckstein. Exploring the Causal Structures of Almost Commutative Geometries. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a9/
[1] Barrett J. W., “Lorentzian version of the noncommutative geometry of the standard model of particle physics”, J. Math. Phys., 48 (2007), 012303, 7 pp., arXiv: hep-th/0608221 | DOI | MR | Zbl
[2] Bengtsson I., Życzkowski K., Geometry of quantum states. An introduction to quantum entanglement, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl
[3] Besnard F., “A noncommutative view on topology and order”, J. Geom. Phys., 59 (2009), 861–875, arXiv: 0804.3551 | DOI | MR | Zbl
[4] Bieliavsky P., Claessens L., Sternheimer D., Voglaire Y., “Quantized anti de {S}itter spaces and non-formal deformation quantizations of symplectic symmetric spaces”, Poisson Geometry in Mathematics and Physics, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, 2008, 1–24, arXiv: 0705.4179 | DOI | MR | Zbl
[5] Bieliavsky P., Detournay S., Rooman M., Spindel Ph., BTZ black holes, WZW models and noncommutative geometry, arXiv: hep-th/0511080
[6] Bieliavsky P., Detournay S., Spindel Ph., Rooman M., “Star products on extended massive non-rotating {BTZ} black holes”, J. High Energy Phys., 2004:6 (2004), 031, 25 pp., arXiv: hep-th/0403257 | DOI | MR
[7] Bognár J., Indefinite inner product spaces, Springer-Verlag, New York, 1974 | MR | Zbl
[8] Cagnache E., D'Andrea F., Martinetti P., Wallet J.-C., “The spectral distance in the {M}oyal plane”, J. Geom. Phys., 61 (2011), 1881–1897, arXiv: 0912.0906 | DOI | MR | Zbl
[9] Chamseddine A. H., Connes A., Marcolli M., “Gravity and the standard model with neutrino mixing”, Adv. Theor. Math. Phys., 11 (2007), 991–1089, arXiv: hep-th/0610241 | DOI | MR | Zbl
[10] Connes A., Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl
[11] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[12] D'Andrea F., Martinetti P., “On {P}ythagoras theorem for products of spectral triples”, Lett. Math. Phys., 103 (2013), 469–492, arXiv: 1203.3184 | DOI | MR
[13] Franco N., Lorentzian approach to noncommutative geometry, Ph.D. Thesis, University of Namur, Belgium, 2011, arXiv: 1108.0592
[14] Franco N., Temporal Lorentzian spectral triple, arXiv: 1210.6575
[15] Franco N., Eckstein M., “An algebraic formulation of causality for noncommutative geometry”, Classical Quantum Gravity, 30 (2013), 135007, 18 pp., arXiv: 1212.5171 | DOI | MR
[16] Gayral V., Gracia-Bondía J. M., Iochum B., Schücker T., Várilly J. C., “Moyal planes are spectral triples”, Comm. Math. Phys., 246 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl
[17] Iochum B., Krajewski T., Martinetti P., “Distances in finite spaces from noncommutative geometry”, J. Geom. Phys., 37 (2001), 100–125, arXiv: hep-th/9912217 | DOI | MR | Zbl
[18] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. II, Pure and Applied Mathematics, 100, Advanced theory, Academic Press Inc., Orlando, FL, 1986 | MR | Zbl
[19] Marcolli M., Pierpaoli E., Teh K., “The spectral action and cosmic topology”, Comm. Math. Phys., 304 (2011), 125–174, arXiv: 1005.2256 | DOI | MR | Zbl
[20] Moretti V., “Aspects of noncommutative {L}orentzian geometry for globally hyperbolic spacetimes”, Rev. Math. Phys., 15 (2003), 1171–1217, arXiv: gr-qc/0203095 | DOI | MR | Zbl
[21] Nakahara M., Geometry, topology and physics, Graduate Student Series in Physics, 2nd ed., Institute of Physics, Bristol, 2003 | DOI | MR | Zbl
[22] Nelson W., Sakellariadou M., “Cosmology and the noncommutative approach to the standard model”, Phys. Rev. D, 81 (2010), 085038, 7 pp., arXiv: 0812.1657 | DOI
[23] Paschke M., Sitarz A., Equivariant Lorentzian spectral triples, arXiv: math-ph/0611029
[24] Strohmaier A., “On noncommutative and pseudo-{R}iemannian geometry”, J. Geom. Phys., 56 (2006), 175–195, arXiv: math-ph/0110001 | DOI | MR | Zbl
[25] van den Dungen K., Paschke M., Rennie A., “Pseudo-{R}iemannian spectral triples and the harmonic oscillator”, J. Geom. Phys., 73 (2013), 37–55, arXiv: 1207.2112 | DOI | MR | Zbl
[26] van den Dungen K., van Suijlekom W. D., “Particle physics from almost-commutative spacetimes”, Rev. Math. Phys., 24 (2012), 1230004, 105 pp., arXiv: 1204.0328 | DOI | MR | Zbl
[27] van Suijlekom W. D., “The noncommutative {L}orentzian cylinder as an isospectral deformation”, J. Math. Phys., 45 (2004), 537–556, arXiv: math-ph/0310009 | DOI | MR | Zbl
[28] Verch R., “Quantum Dirac field on Moyal–Minkowski spacetime — illustrating quantum field theory over Lorentzian spectral geometry”, Acta Phys. Polon. B Proc. Suppl., 4 (2011), 507–527, arXiv: 1106.1138 | DOI