Exploring the Causal Structures of Almost Commutative Geometries
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the causal relations in the space of states of almost commutative Lorentzian geometries. We fully describe the causal structure of a simple model based on the algebra $\mathcal{S}(\mathbb{R}^{1,1}) \otimes M_2(\mathbb{C})$, which has a non-trivial space of internal degrees of freedom. It turns out that the causality condition imposes restrictions on the motion in the internal space. Moreover, we show that the requirement of causality favours a unitary evolution in the internal space.
Keywords: noncommutative geometry; causal structures; Lorentzian spectral triples.
@article{SIGMA_2014_10_a9,
     author = {Nicolas Franco and Micha{\l} Eckstein},
     title = {Exploring the {Causal} {Structures} of {Almost} {Commutative} {Geometries}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a9/}
}
TY  - JOUR
AU  - Nicolas Franco
AU  - Michał Eckstein
TI  - Exploring the Causal Structures of Almost Commutative Geometries
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a9/
LA  - en
ID  - SIGMA_2014_10_a9
ER  - 
%0 Journal Article
%A Nicolas Franco
%A Michał Eckstein
%T Exploring the Causal Structures of Almost Commutative Geometries
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a9/
%G en
%F SIGMA_2014_10_a9
Nicolas Franco; Michał Eckstein. Exploring the Causal Structures of Almost Commutative Geometries. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a9/

[1] Barrett J. W., “Lorentzian version of the noncommutative geometry of the standard model of particle physics”, J. Math. Phys., 48 (2007), 012303, 7 pp., arXiv: hep-th/0608221 | DOI | MR | Zbl

[2] Bengtsson I., Życzkowski K., Geometry of quantum states. An introduction to quantum entanglement, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl

[3] Besnard F., “A noncommutative view on topology and order”, J. Geom. Phys., 59 (2009), 861–875, arXiv: 0804.3551 | DOI | MR | Zbl

[4] Bieliavsky P., Claessens L., Sternheimer D., Voglaire Y., “Quantized anti de {S}itter spaces and non-formal deformation quantizations of symplectic symmetric spaces”, Poisson Geometry in Mathematics and Physics, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, 2008, 1–24, arXiv: 0705.4179 | DOI | MR | Zbl

[5] Bieliavsky P., Detournay S., Rooman M., Spindel Ph., BTZ black holes, WZW models and noncommutative geometry, arXiv: hep-th/0511080

[6] Bieliavsky P., Detournay S., Spindel Ph., Rooman M., “Star products on extended massive non-rotating {BTZ} black holes”, J. High Energy Phys., 2004:6 (2004), 031, 25 pp., arXiv: hep-th/0403257 | DOI | MR

[7] Bognár J., Indefinite inner product spaces, Springer-Verlag, New York, 1974 | MR | Zbl

[8] Cagnache E., D'Andrea F., Martinetti P., Wallet J.-C., “The spectral distance in the {M}oyal plane”, J. Geom. Phys., 61 (2011), 1881–1897, arXiv: 0912.0906 | DOI | MR | Zbl

[9] Chamseddine A. H., Connes A., Marcolli M., “Gravity and the standard model with neutrino mixing”, Adv. Theor. Math. Phys., 11 (2007), 991–1089, arXiv: hep-th/0610241 | DOI | MR | Zbl

[10] Connes A., Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl

[11] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[12] D'Andrea F., Martinetti P., “On {P}ythagoras theorem for products of spectral triples”, Lett. Math. Phys., 103 (2013), 469–492, arXiv: 1203.3184 | DOI | MR

[13] Franco N., Lorentzian approach to noncommutative geometry, Ph.D. Thesis, University of Namur, Belgium, 2011, arXiv: 1108.0592

[14] Franco N., Temporal Lorentzian spectral triple, arXiv: 1210.6575

[15] Franco N., Eckstein M., “An algebraic formulation of causality for noncommutative geometry”, Classical Quantum Gravity, 30 (2013), 135007, 18 pp., arXiv: 1212.5171 | DOI | MR

[16] Gayral V., Gracia-Bondía J. M., Iochum B., Schücker T., Várilly J. C., “Moyal planes are spectral triples”, Comm. Math. Phys., 246 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl

[17] Iochum B., Krajewski T., Martinetti P., “Distances in finite spaces from noncommutative geometry”, J. Geom. Phys., 37 (2001), 100–125, arXiv: hep-th/9912217 | DOI | MR | Zbl

[18] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. II, Pure and Applied Mathematics, 100, Advanced theory, Academic Press Inc., Orlando, FL, 1986 | MR | Zbl

[19] Marcolli M., Pierpaoli E., Teh K., “The spectral action and cosmic topology”, Comm. Math. Phys., 304 (2011), 125–174, arXiv: 1005.2256 | DOI | MR | Zbl

[20] Moretti V., “Aspects of noncommutative {L}orentzian geometry for globally hyperbolic spacetimes”, Rev. Math. Phys., 15 (2003), 1171–1217, arXiv: gr-qc/0203095 | DOI | MR | Zbl

[21] Nakahara M., Geometry, topology and physics, Graduate Student Series in Physics, 2nd ed., Institute of Physics, Bristol, 2003 | DOI | MR | Zbl

[22] Nelson W., Sakellariadou M., “Cosmology and the noncommutative approach to the standard model”, Phys. Rev. D, 81 (2010), 085038, 7 pp., arXiv: 0812.1657 | DOI

[23] Paschke M., Sitarz A., Equivariant Lorentzian spectral triples, arXiv: math-ph/0611029

[24] Strohmaier A., “On noncommutative and pseudo-{R}iemannian geometry”, J. Geom. Phys., 56 (2006), 175–195, arXiv: math-ph/0110001 | DOI | MR | Zbl

[25] van den Dungen K., Paschke M., Rennie A., “Pseudo-{R}iemannian spectral triples and the harmonic oscillator”, J. Geom. Phys., 73 (2013), 37–55, arXiv: 1207.2112 | DOI | MR | Zbl

[26] van den Dungen K., van Suijlekom W. D., “Particle physics from almost-commutative spacetimes”, Rev. Math. Phys., 24 (2012), 1230004, 105 pp., arXiv: 1204.0328 | DOI | MR | Zbl

[27] van Suijlekom W. D., “The noncommutative {L}orentzian cylinder as an isospectral deformation”, J. Math. Phys., 45 (2004), 537–556, arXiv: math-ph/0310009 | DOI | MR | Zbl

[28] Verch R., “Quantum Dirac field on Moyal–Minkowski spacetime — illustrating quantum field theory over Lorentzian spectral geometry”, Acta Phys. Polon. B Proc. Suppl., 4 (2011), 507–527, arXiv: 1106.1138 | DOI