@article{SIGMA_2014_10_a89,
author = {Nobutaka Nakazono},
title = {Hypergeometric {Solutions} of the $A_4^{(1)}${-Surface} $q${-Painlev\'e} {IV} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a89/}
}
Nobutaka Nakazono. Hypergeometric Solutions of the $A_4^{(1)}$-Surface $q$-Painlevé IV Equation. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a89/
[1] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[2] Hamamoto T., Kajiwara K., “Hypergeometric solutions to the {$q$}-{P}ainlevé equation of type {$A_4^{(1)}$}”, J. Phys. A: Math. Gen., 40 (2007), 12509–12524, arXiv: nlin.SI/0701001 | DOI | MR | Zbl
[3] Hamamoto T., Kajiwara K., Witte N. S., “Hypergeometric solutions to the {$q$}-{P}ainlevé equation of type {$(A_1+A'_1)^{(1)}$}”, Int. Math. Res. Not., 2006 (2006), 84619, 26 pp., arXiv: nlin.SI/0607065 | DOI | MR | Zbl
[4] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[5] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From {G}auss to {P}ainlevé. A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR | Zbl
[6] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, {II}”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[7] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, {III}”, Phys. D, 4 (1981), 26–46 | DOI | MR | Zbl
[8] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. {I}: {G}eneral theory and {$\tau$}-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[9] Joshi N., Kajiwara K., Mazzocco M., “Generating function associated with the {H}ankel determinant formula for the solutions of the {P}ainlevé {IV} equation”, Funkcial. Ekvac., 49 (2006), 451–468, arXiv: nlin.SI/0512041 | DOI | MR | Zbl
[10] Kajiwara K., Kimura K., “On a {$q$}-difference {P}ainlevé {III} equation. {I}: {D}erivation, symmetry and {R}iccati type solutions”, J. Nonlinear Math. Phys., 10 (2003), 86–102, arXiv: nlin.SI/0205019 | DOI | MR | Zbl
[11] Kajiwara K., Masuda T., “A generalization of determinant formulae for the solutions of {P}ainlevé {II} and {XXXIV} equations”, J. Phys. A: Math. Gen., 32 (1999), 3763–3778, arXiv: solv-int/9903014 | DOI | MR | Zbl
[12] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “{${}_{10}E_9$} solution to the elliptic {P}ainlevé equation”, J. Phys. A: Math. Gen., 36 (2003), L263–L272, arXiv: nlin.SI/0303032 | DOI | MR | Zbl
[13] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Hypergeometric solutions to the {$q$}-{P}ainlevé equations”, Int. Math. Res. Not., 2004 (2004), 2497–2521, arXiv: nlin.SI/0403036 | DOI | MR | Zbl
[14] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Construction of hypergeometric solutions to the {$q$}-{P}ainlevé equations”, Int. Math. Res. Not., 2005 (2005), 1441–1463, arXiv: nlin.SI/0501051 | DOI | MR
[15] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Point configurations, {C}remona transformations and the elliptic difference {P}ainlevé equation”, Théories asymptotiques et équations de {P}ainlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 169–198, arXiv: nlin.SI/0411003 | MR | Zbl
[16] Kajiwara K., Nakazono N., “Hypergeometric solutions to the symmetric {$q$}-{P}ainlevé equations”, Int. Math. Res. Not. (to appear) , arXiv: 1304.0858 | DOI
[17] Kajiwara K., Nakazono N., Tsuda T., “Projective reduction of the discrete {P}ainlevé system of type {$(A_2+A_1)^{(1)}$}”, Int. Math. Res. Not., 2011, 930–966, arXiv: 0910.4439 | DOI | MR | Zbl
[18] Kajiwara K., Noumi M., Yamada Y., “A study on the fourth {$q$}-{P}ainlevé equation”, J. Phys. A: Math. Gen., 34 (2001), 8563–8581, arXiv: nlin.SI/0012063 | DOI | MR | Zbl
[19] Kajiwara K., Ohta Y., “Determinant structure of the rational solutions for the {P}ainlevé {IV} equation”, J. Phys. A: Math. Gen., 31 (1998), 2431–2446, arXiv: solv-int/9709011 | DOI | MR | Zbl
[20] Kajiwara K., Ohta Y., Satsuma J., “Casorati determinant solutions for the discrete {P}ainlevé {III} equation”, J. Math. Phys., 36 (1995), 4162–4174, arXiv: solv-int/9412004 | DOI | MR | Zbl
[21] Kajiwara K., Ohta Y., Satsuma J., Grammaticos B., Ramani A., “Casorati determinant solutions for the discrete {P}ainlevé-{II} equation”, J. Phys. A: Math. Gen., 27 (1994), 915–922, arXiv: solv-int/9310002 | DOI | MR | Zbl
[22] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their {$q$}-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[23] Masuda T., “Hypergeometric {$\tau$}-functions of the {$q$}-{P}ainlevé system of type {$E_7^{(1)}$}”, SIGMA, 5 (2009), 035, 30 pp., arXiv: 0903.4102 | DOI | MR | Zbl
[24] Masuda T., “Hypergeometric {$\tau$}-functions of the {$q$}-{P}ainlevé system of type {$E^{(1)}_8$}”, Ramanujan J., 24 (2011), 1–31 | DOI | MR | Zbl
[25] Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Mathematics, 135, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[26] Nakazono N., “Hypergeometric {$\tau$} functions of the {$q$}-{P}ainlevé systems of type {$(A_2+A_1)^{(1)}$}”, SIGMA, 6 (2010), 084, 16 pp., arXiv: 1008.2595 | DOI | MR | Zbl
[27] Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, 223, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[28] Ohta Y., Nakamura A., “Similarity {KP} equation and various different representations of its solutions”, J. Phys. Soc. Japan, 61 (1992), 4295–4313 | DOI | MR
[29] Okamoto K., “Studies on the {P}ainlevé equations. {III}: {S}econd and fourth {P}ainlevé equations, {$P_{{\rm II}}$} and {$P_{{\rm IV}}$}”, Math. Ann., 275 (1986), 221–255 | DOI | MR | Zbl
[30] Okamoto K., “Studies on the {P}ainlevé equations. {I}: {S}ixth {P}ainlevé equation {$P_{{\rm VI}}$}”, Ann. Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl
[31] Okamoto K., “Studies on the {P}ainlevé equations. {II}: {F}ifth {P}ainlevé equation {$P_{\rm V}$}”, Japan. J. Math. (N.S.), 13 (1987), 47–76 | MR | Zbl
[32] Okamoto K., “Studies on the {P}ainlevé equations. {IV}: {T}hird {P}ainlevé equation {$P_{{\rm III}}$}”, Funkcial. Ekvac., 30 (1987), 305–332 | MR | Zbl
[33] Quispel G. R. W., Roberts J. A. G., Thompson C. J., “Integrable mappings and soliton equations”, Phys. Lett. A, 126 (1988), 419–421 | DOI | MR | Zbl
[34] Quispel G. R. W., Roberts J. A. G., Thompson C. J., “Integrable mappings and soliton equations, {II}”, Phys. D, 34 (1989), 183–192 | DOI | MR | Zbl
[35] Ramani A., Grammaticos B., “Discrete {P}ainlevé equations: coalescences, limits and degeneracies”, Phys. A, 228 (1996), 160–171, arXiv: solv-int/9510011 | DOI | MR | Zbl
[36] Sakai H., “Casorati determinant solutions for the {$q$}-difference sixth {P}ainlevé equation”, Nonlinearity, 11 (1998), 823–833 | DOI | MR | Zbl
[37] Sakai H., “Rational surfaces associated with affine root systems and geometry of the {P}ainlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[38] Tamizhmani K. M., Grammaticos B., Carstea A. S., Ramani A., “The {$q$}-discrete {P}ainlevé {IV} equations and their properties”, Regul. Chaotic Dyn., 9 (2004), 13–20 | DOI | MR | Zbl
[39] Tsuda T., “Tau functions of {$q$}-{P}ainlevé {III} and {IV} equations”, Lett. Math. Phys., 75 (2006), 39–47 | DOI | MR | Zbl
[40] Uvarov V. B., “The connection between systems of polynomials that are orthogonal with respect to different distribution functions”, USSR Comput. Math. Math. Phys., 9:6 (1969), 25–36 | DOI | MR
[41] Zhedanov A., “Rational spectral transformations and orthogonal polynomials”, J. Comput. Appl. Math., 85 (1997), 67–86 | DOI | MR | Zbl