Maximal Green Sequences of Exceptional Finite Mutation Type Quivers
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Maximal green sequences are particular sequences of mutations of quivers which were introduced by Keller in the context of quantum dilogarithm identities and independently by Cecotti–Córdova–Vafa in the context of supersymmetric gauge theory. The existence of maximal green sequences for exceptional finite mutation type quivers has been shown by Alim–Cecotti–Córdova–Espahbodi–Rastogi–Vafa except for the quiver $X_7$. In this paper we show that the quiver $X_7$ does not have any maximal green sequences. We also generalize the idea of the proof to give sufficient conditions for the non-existence of maximal green sequences for an arbitrary quiver.
Keywords: skew-symmetrizable matrices; maximal green sequences; mutation classes.
@article{SIGMA_2014_10_a88,
     author = {Ahmet I. Seven},
     title = {Maximal {Green} {Sequences} of {Exceptional} {Finite} {Mutation} {Type} {Quivers}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a88/}
}
TY  - JOUR
AU  - Ahmet I. Seven
TI  - Maximal Green Sequences of Exceptional Finite Mutation Type Quivers
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a88/
LA  - en
ID  - SIGMA_2014_10_a88
ER  - 
%0 Journal Article
%A Ahmet I. Seven
%T Maximal Green Sequences of Exceptional Finite Mutation Type Quivers
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a88/
%G en
%F SIGMA_2014_10_a88
Ahmet I. Seven. Maximal Green Sequences of Exceptional Finite Mutation Type Quivers. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a88/

[1] Alim M., Cecotti S., Córdova C., Espahbodi S., Rastogi A., Vafa C., “B{PS} quivers and spectra of complete {$\mathcal{N}=2$} quantum field theories”, Comm. Math. Phys., 323 (2013), 1185–1227, arXiv: 1109.4941 | DOI | MR | Zbl

[2] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. {III}: {U}pper bounds and double {B}ruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl

[3] Brüstle T., Dupont G., Pérotin M., “On maximal green sequences”, Int. Math. Res. Not., 2014 (2014), 4547–4586, arXiv: 1205.2050 | DOI

[4] Canakci I., Lee K., Schiffler R., On cluster algebras from unpunctured surfaces with one marked point, arXiv: 1407.5060

[5] Cecotti S., Córdova C., Vafa C., Braids, walls and mirrors, arXiv: 1110.2115

[6] Derksen H., Owen T., “New graphs of finite mutation type”, Electron. J. Combin., 15 (2008), 139, 15 pp., arXiv: 0804.0787 | MR

[7] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations. {II}: Applications to cluster algebras”, J. Amer. Math. Soc., 23 (2010), 749–790, arXiv: 0904.0676 | DOI | MR | Zbl

[8] Fomin S., Zelevinsky A., “Cluster algebras. {IV}: {C}oefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl

[9] Keller B., “On cluster theory and quantum dilogarithm identities”, Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 85–116, arXiv: 1102.4148 | DOI | MR | Zbl

[10] Nakanishi T., Zelevinsky A., “On tropical dualities in cluster algebras”, Algebraic Groups and Quantum Groups, Contemp. Math., 565, Amer. Math. Soc., Providence, RI, 2012, 217–226, arXiv: 1101.3736 | DOI | MR | Zbl

[11] Seven A. I., “Maximal green sequences of skew-symmetrizable {$3\times3$} matrices”, Linear Algebra Appl., 440 (2014), 125–130, arXiv: 1207.6265 | DOI | MR | Zbl