@article{SIGMA_2014_10_a88,
author = {Ahmet I. Seven},
title = {Maximal {Green} {Sequences} of {Exceptional} {Finite} {Mutation} {Type} {Quivers}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a88/}
}
Ahmet I. Seven. Maximal Green Sequences of Exceptional Finite Mutation Type Quivers. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a88/
[1] Alim M., Cecotti S., Córdova C., Espahbodi S., Rastogi A., Vafa C., “B{PS} quivers and spectra of complete {$\mathcal{N}=2$} quantum field theories”, Comm. Math. Phys., 323 (2013), 1185–1227, arXiv: 1109.4941 | DOI | MR | Zbl
[2] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. {III}: {U}pper bounds and double {B}ruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl
[3] Brüstle T., Dupont G., Pérotin M., “On maximal green sequences”, Int. Math. Res. Not., 2014 (2014), 4547–4586, arXiv: 1205.2050 | DOI
[4] Canakci I., Lee K., Schiffler R., On cluster algebras from unpunctured surfaces with one marked point, arXiv: 1407.5060
[5] Cecotti S., Córdova C., Vafa C., Braids, walls and mirrors, arXiv: 1110.2115
[6] Derksen H., Owen T., “New graphs of finite mutation type”, Electron. J. Combin., 15 (2008), 139, 15 pp., arXiv: 0804.0787 | MR
[7] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations. {II}: Applications to cluster algebras”, J. Amer. Math. Soc., 23 (2010), 749–790, arXiv: 0904.0676 | DOI | MR | Zbl
[8] Fomin S., Zelevinsky A., “Cluster algebras. {IV}: {C}oefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl
[9] Keller B., “On cluster theory and quantum dilogarithm identities”, Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 85–116, arXiv: 1102.4148 | DOI | MR | Zbl
[10] Nakanishi T., Zelevinsky A., “On tropical dualities in cluster algebras”, Algebraic Groups and Quantum Groups, Contemp. Math., 565, Amer. Math. Soc., Providence, RI, 2012, 217–226, arXiv: 1101.3736 | DOI | MR | Zbl
[11] Seven A. I., “Maximal green sequences of skew-symmetrizable {$3\times3$} matrices”, Linear Algebra Appl., 440 (2014), 125–130, arXiv: 1207.6265 | DOI | MR | Zbl