Piecewise Principal Coactions of Co-Commutative Hopf Algebras
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Principal comodule algebras can be thought of as objects representing principal bundles in non-commutative geometry. A crucial component of a principal comodule algebra is a strong connection map. For some applications it suffices to prove that such a map exists, but for others, such as computing the associated bundle projectors or Chern–Galois characters, an explicit formula for a strong connection is necessary. It has been known for some time how to construct a strong connection map on a multi-pullback comodule algebra from strong connections on multi-pullback components, but the known explicit general formula is unwieldy. In this paper we derive a much easier to use strong connection formula, which is not, however, completely general, but is applicable only in the case when a Hopf algebra is co-commutative. Because certain linear splittings of projections in multi-pullback comodule algebras play a crucial role in our construction, we also devote a significant part of the paper to the problem of existence and explicit formulas for such splittings. Finally, we show example application of our work.
Keywords: strong connections; multi-pullbacks.
@article{SIGMA_2014_10_a87,
     author = {Bartosz Zieli\'nski},
     title = {Piecewise {Principal} {Coactions} of {Co-Commutative} {Hopf} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a87/}
}
TY  - JOUR
AU  - Bartosz Zieliński
TI  - Piecewise Principal Coactions of Co-Commutative Hopf Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a87/
LA  - en
ID  - SIGMA_2014_10_a87
ER  - 
%0 Journal Article
%A Bartosz Zieliński
%T Piecewise Principal Coactions of Co-Commutative Hopf Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a87/
%G en
%F SIGMA_2014_10_a87
Bartosz Zieliński. Piecewise Principal Coactions of Co-Commutative Hopf Algebras. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a87/

[1] Baum P. F., Hajac P. M., Matthes R., Szymański W., “The {$K$}-theory of {H}eegaard-type quantum 3-spheres”, $K$-Theory, 35 (2005), 159–186, arXiv: math.KT/0409573 | DOI | MR | Zbl

[2] Baum P. F., Hajac P. M., Matthes R., Szymański W., “Noncommutative geometry approach to principal and associated bundles”, Quantum Symmetry in Noncommutative Geometry (to appear) , arXiv: math.DG/0701033

[3] Brzeziński T., Fairfax S. A., “Quantum teardrops”, Comm. Math. Phys., 316 (2012), 151–170, arXiv: 1107.1417 | DOI | MR | Zbl

[4] Brzeziński T., Fairfax S. A., “Weighted circle actions on the {H}eegaard quantum sphere”, Lett. Math. Phys., 104 (2014), 195–215, arXiv: 1305.5942 | DOI | MR | Zbl

[5] Brzeziński T., Hajac P. M., “The {C}hern–{G}alois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl

[6] Calow D., Matthes R., “Covering and gluing of algebras and differential algebras”, J. Geom. Phys., 32 (2000), 364–396, arXiv: math.QA/9910031 | DOI | MR | Zbl

[7] Calow D., Matthes R., “Connections on locally trivial quantum principal fibre bundles”, J. Geom. Phys., 41 (2002), 114–165, arXiv: math.QA/0002228 | DOI | MR | Zbl

[8] Cirio L. S., Pagani C., A 4-sphere with non central radius and its instanton sheaf, arXiv: 1402.6609

[9] Da̧browski L., Grosse H., Hajac P. M., “Strong connections and {C}hern–{C}onnes pairing in the {H}opf–{G}alois theory”, Comm. Math. Phys., 220 (2001), 301–331, arXiv: math.QA/9912239 | DOI | MR

[10] Da̧browski L., Hadfield T., Hajac P. M., Matthes R., Wagner E., “Index pairings for pullbacks of $C^*$-algebras”, Operator Algebras and Quantum Groups, Banach Center Publ., 98, Polish Acad. Sci., Warsaw, 2012, 67–84, arXiv: math.QA/0702001 | DOI | MR

[11] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl

[12] Hajac P. M., Krähmer U., Matthes R., Zieliński B., “Piecewise principal comodule algebras”, J. Noncommut. Geom., 5 (2011), 591–614, arXiv: 0707.1344 | DOI | MR | Zbl

[13] Hajac P. M., Matthes R., Szymański W., “Chern numbers for two families of noncommutative {H}opf fibrations”, C. R. Math. Acad. Sci. Paris, 336 (2003), 925–930, arXiv: math.QA/0302256 | DOI | MR | Zbl

[14] Hajac P. M., Matthes R., Szymanski W., “A locally trivial quantum {H}opf fibration”, Algebr. Represent. Theory, 9 (2006), 121–146, arXiv: math.QA/0112317 | DOI | MR | Zbl

[15] Hajac P. M., Matthes R., Szymański W., “Noncommutative index theory for mirror quantum spheres”, C. R. Math. Acad. Sci. Paris, 343 (2006), 731–736, arXiv: math.KT/0511309 | DOI | MR | Zbl

[16] Hajac P. M., Rennie A., Zieliński B., “The {$K$}-theory of {H}eegaard quantum lens spaces”, J. Noncommut. Geom., 7 (2013), 1185–1216, arXiv: 1110.5897 | DOI | MR | Zbl

[17] Hajac P. M., Rudnik J., Zieliński B., Reductions of piecewise trivial principal comodule algebras, arXiv: 1101.0201

[18] Hajac P. M., Wagner E., The pullbacks of principal coactions, arXiv: 1001.0075

[19] Hajac P. M., Zieliński B., “Cocycle condition for multi-pullbacks of algebras”, Operator Algebras and Quantum Groups, Banach Center Publ., 98, Polish Acad. Sci., Warsaw, 2012, 239–243, arXiv: 1207.0087 | DOI | MR | Zbl

[20] Pedersen G. K., “Pullback and pushout constructions in {$C^*$}-algebra theory”, J. Funct. Anal., 167 (1999), 243–344 | DOI | MR | Zbl

[21] Rudnik J., “The {$K$}-theory of the triple-{T}oeplitz deformation of the complex projective plane”, Operator Algebras and Quantum Groups, Banach Center Publ., 98, Polish Acad. Sci., Warsaw, 2012, 303–310, arXiv: 1207.2066 | DOI | MR | Zbl

[22] Rudnik J., The noncommutative topology of triple-pullback $C^*$-algebra, Ph. D. Thesis, Institute of Mathematics, Polish Academy of Science, Warsaw, 2013

[23] Vasilevski N. L., Commutative algebras of {T}oeplitz operators on the {B}ergman space, Operator Theory: Advances and Applications, 185, Birkhäuser Verlag, Basel, 2008 | MR | Zbl