@article{SIGMA_2014_10_a86,
author = {Naoki Sasakura and Yuki Sato},
title = {Exact {Free} {Energies} of {Statistical} {Systems} on {Random} {Networks}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a86/}
}
Naoki Sasakura; Yuki Sato. Exact Free Energies of Statistical Systems on Random Networks. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a86/
[1] Bachas C., de Calan C., Petropoulos P. M. S., “Quenched random graphs”, J. Phys. A: Math. Gen., 27 (1994), 6121–6128, arXiv: hep-th/9405068 | DOI
[2] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl
[3] Dembo A., Montanari A., “Ising models on locally tree-like graphs”, Ann. Appl. Probab., 20 (2010), 565–592, arXiv: 0804.4726 | DOI | MR | Zbl
[4] Dembo A., Montanari A., Sly A., Sun N., The replica symmetric solution for Potts models on $d$-regular graphs, arXiv: 1207.5500
[5] Dorogovtsev S. N., Goltsev A. V., Mendes J. F. F., “Ising model on networks with an arbitrary distribution of connections”, Phys. Rev. E, 66 (2002), 016104, 5 pp., arXiv: cond-mat/0203227 | DOI
[6] El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D., Vichi A., “Solving the 3D Ising model with the conformal bootstrap”, Phys. Rev. D, 86 (2012), 025022, 17 pp., arXiv: 1203.6064 | DOI
[7] Johnston D. A., Plecháč P., “Equivalence of ferromagnetic spin models on trees and random graphs”, J. Phys. A: Math. Gen., 31 (1998), 475–482 | DOI | MR | Zbl
[8] Kazakov V. A., “Ising model on a dynamical planar random lattice: exact solution”, Phys. Lett. A, 119 (1986), 140–144 | DOI | MR
[9] Leone M., Vázquez A., Vespignani A., Zecchina R., “Ferromagnetic ordering in graphs with arbitrary degree distribution”, Eur. Phys. J. B, 28 (2002), 191–197, arXiv: cond-mat/0203416 | DOI
[10] Onsager L., “Crystal statistics. {I}: {A} two-dimensional model with an order-disorder transition”, Phys. Rev., 65 (1944), 117–149 | DOI | MR | Zbl
[11] Sasakura N., Sato Y., “Ising model on random networks and the canonical tensor model”, Progr. Theoret. Exp. Phys., 2014 (2014), 053B03, 15 pp., arXiv: 1401.7806 | DOI
[12] Whittle P., “Fields and flows on random graphs”, Disorder in Physical Systems, Oxford Science Publications, eds. G. R. Grimmett, D. Welsh, Oxford University Press, New York, 1990, 337–348 | MR