Exact Free Energies of Statistical Systems on Random Networks
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Statistical systems on random networks can be formulated in terms of partition functions expressed with integrals by regarding Feynman diagrams as random networks. We consider the cases of random networks with bounded but generic degrees of vertices, and show that the free energies can be exactly evaluated in the thermodynamic limit by the Laplace method, and that the exact expressions can in principle be obtained by solving polynomial equations for mean fields. As demonstrations, we apply our method to the ferromagnetic Ising models on random networks. The free energy of the ferromagnetic Ising model on random networks with trivalent vertices is shown to exactly reproduce that of the ferromagnetic Ising model on the Bethe lattice. We also consider the cases with heterogeneity with mixtures of orders of vertices, and derive the known formula of the Curie temperature.
Keywords: random networks; exact results; phase transitions; Ising model; quantum gravity.
@article{SIGMA_2014_10_a86,
     author = {Naoki Sasakura and Yuki Sato},
     title = {Exact {Free} {Energies} of {Statistical} {Systems} on {Random} {Networks}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a86/}
}
TY  - JOUR
AU  - Naoki Sasakura
AU  - Yuki Sato
TI  - Exact Free Energies of Statistical Systems on Random Networks
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a86/
LA  - en
ID  - SIGMA_2014_10_a86
ER  - 
%0 Journal Article
%A Naoki Sasakura
%A Yuki Sato
%T Exact Free Energies of Statistical Systems on Random Networks
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a86/
%G en
%F SIGMA_2014_10_a86
Naoki Sasakura; Yuki Sato. Exact Free Energies of Statistical Systems on Random Networks. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a86/

[1] Bachas C., de Calan C., Petropoulos P. M. S., “Quenched random graphs”, J. Phys. A: Math. Gen., 27 (1994), 6121–6128, arXiv: hep-th/9405068 | DOI

[2] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl

[3] Dembo A., Montanari A., “Ising models on locally tree-like graphs”, Ann. Appl. Probab., 20 (2010), 565–592, arXiv: 0804.4726 | DOI | MR | Zbl

[4] Dembo A., Montanari A., Sly A., Sun N., The replica symmetric solution for Potts models on $d$-regular graphs, arXiv: 1207.5500

[5] Dorogovtsev S. N., Goltsev A. V., Mendes J. F. F., “Ising model on networks with an arbitrary distribution of connections”, Phys. Rev. E, 66 (2002), 016104, 5 pp., arXiv: cond-mat/0203227 | DOI

[6] El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D., Vichi A., “Solving the 3D Ising model with the conformal bootstrap”, Phys. Rev. D, 86 (2012), 025022, 17 pp., arXiv: 1203.6064 | DOI

[7] Johnston D. A., Plecháč P., “Equivalence of ferromagnetic spin models on trees and random graphs”, J. Phys. A: Math. Gen., 31 (1998), 475–482 | DOI | MR | Zbl

[8] Kazakov V. A., “Ising model on a dynamical planar random lattice: exact solution”, Phys. Lett. A, 119 (1986), 140–144 | DOI | MR

[9] Leone M., Vázquez A., Vespignani A., Zecchina R., “Ferromagnetic ordering in graphs with arbitrary degree distribution”, Eur. Phys. J. B, 28 (2002), 191–197, arXiv: cond-mat/0203416 | DOI

[10] Onsager L., “Crystal statistics. {I}: {A} two-dimensional model with an order-disorder transition”, Phys. Rev., 65 (1944), 117–149 | DOI | MR | Zbl

[11] Sasakura N., Sato Y., “Ising model on random networks and the canonical tensor model”, Progr. Theoret. Exp. Phys., 2014 (2014), 053B03, 15 pp., arXiv: 1401.7806 | DOI

[12] Whittle P., “Fields and flows on random graphs”, Disorder in Physical Systems, Oxford Science Publications, eds. G. R. Grimmett, D. Welsh, Oxford University Press, New York, 1990, 337–348 | MR