@article{SIGMA_2014_10_a84,
author = {Bert Schroer},
title = {The {Ongoing} {Impact} of {Modular} {Localization} on {Particle} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a84/}
}
Bert Schroer. The Ongoing Impact of Modular Localization on Particle Theory. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a84/
[1] Aste A., Scharf G., Dütsch M., “On gauge invariance and spontaneous symmetry breaking”, J. Phys. A: Math. Gen., 30 (1997), 5785–5792, arXiv: hep-th/9705216 | DOI | MR | Zbl
[2] Babujian H., Fring A., Karowski M., Zapletal A., “Exact form factors in integrable quantum field theories: the sine-{G}ordon model”, Nuclear Phys. B, 538 (1999), 535–586, arXiv: hep-th/9805185 | DOI | MR | Zbl
[3] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl
[4] Bogolyubov N. N., Logunov A., Oksak A. I., Todorov I. T., General principles of quantum field theory, Mathematical Physics and Applied Mathematics, 10, Kluwer Academic Publishers, Dordrecht, 1990 | MR | Zbl
[5] Borchers H.-J., “Field operators as {$C^{\infty }$} functions in spacelike directions”, Nuovo Cimento, 33 (1964), 1600–1613 | DOI | MR | Zbl
[6] Borchers H.-J., “On revolutionizing quantum field theory with {T}omita's modular theory”, J. Math. Phys., 41 (2000), 3604–3673 | DOI | MR | Zbl
[7] Borchers H.-J., Buchholz D., Schroer B., “Polarization-free generators and the {$S$}-matrix”, Comm. Math. Phys., 219 (2001), 125–140, arXiv: hep-th/0003243 | DOI | MR | Zbl
[8] Bros J., Epstein H., Glaser V., “A proof of the crossing property for two-particle amplitudes in general quantum field theory”, Comm. Math. Phys., 1 (1965), 240–264 | DOI | MR
[9] Bros J., Mund J., “Braid group statistics implies scattering in three-dimensional local quantum physics”, Comm. Math. Phys., 315 (2012), 465–488, arXiv: 1112.5785 | DOI | MR | Zbl
[10] Brower R. C., “Spectrum-generating algebra and no-ghost theorem for the dual model”, Phys. Rev. D, 6 (1972), 1655–1662 | DOI
[11] Brunetti R., Guido D., Longo R., “Modular localization and {W}igner particles”, Rev. Math. Phys., 14 (2002), 759–785, arXiv: math-ph/0203021 | DOI | MR | Zbl
[12] Buchholz D., “Haag–{R}uelle approximation of collision states”, Comm. Math. Phys., 36 (1974), 243–253 | DOI | MR
[13] Buchholz D., New light on infrared problems: sectors, statistics, spectrum and all that, arXiv: 1301.2516
[14] Buchholz D., D'Antoni C., Longo R., “Nuclear maps and modular structures. {I}: {G}eneral properties”, J. Funct. Anal., 88 (1990), 233–250 | DOI | MR | Zbl
[15] Buchholz D., Fredenhagen K., “Locality and the structure of particle states”, Comm. Math. Phys., 84 (1982), 1–54 | DOI | MR | Zbl
[16] Buchholz D., Mack G., Todorov I., “The current algebra on the circle as a germ of local field theories”, Nuclear Phys. B Proc. Suppl., 5B (1988), 20–56 | DOI | MR | Zbl
[17] Buchholz D., Solveen C., “Unruh effect and the concept of temperature”, Classical Quantum Gravity, 30 (2013), 085011, 9 pp., arXiv: 1212.2409 | DOI | MR | Zbl
[18] Buchholz D., Summers S. J., Scattering in relativistic quantum field theory: fundamental concepts and tools, arXiv: math-ph/0509047
[19] Buchholz D., Wichmann E. H., “Causal independence and the energy-level density of states in local quantum field theory”, Comm. Math. Phys., 106 (1986), 321–344 | DOI | MR | Zbl
[20] Di Vecchia P., “The birth of string theory”, String theory and fundamental interactions, Lecture Notes in Phys., 737, Springer, Berlin, 2008, 59–118, arXiv: 0704.0101 | DOI | MR
[21] Dong C., Xu F., “Conformal nets associated with lattices and their orbifolds”, Adv. Math., 206 (2006), 279–306, arXiv: math.OA/0411499 | DOI | MR | Zbl
[22] Duncan A., Janssen M., “Pascual Jordan's resolution of the conundrum of the wave-particle duality of light”, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys., 39 (2008), 634–666, arXiv: 0709.3812 | DOI | MR | Zbl
[23] Dütsch M., Gracia-Bondía J. M., Scheck F., Várilly J. C., “Quantum gauge models without (classical) Higgs mechanism”, Eur. Phys. J. C, 69 (2010), 599–621, arXiv: 1001.0932 | DOI
[24] Epstein H., Glaser V., “The role of locality in perturbation theory”, Ann. Inst. H. Poincaré A, 19 (1973), 211–295 | MR
[25] Ezawa H., Swieca J. A., “Spontaneous breakdown of symmetries and zero-mass states”, Comm. Math. Phys., 5 (1967), 330–336 | DOI | MR | Zbl
[26] Fassarella L., Schroer B., “Wigner particle theory and local quantum physics”, J. Phys. A: Math. Gen., 35 (2002), 9123–9164, arXiv: hep-th/0112168 | DOI | MR | Zbl
[27] Haag R., Local quantum physics. Fields, particles, algebras, Texts and Monographs in Physics, 2nd ed., Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl
[28] Haag R., Schroer B., “Postulates of quantum field theory”, J. Math. Phys., 3 (1962), 248–256 | DOI | MR | Zbl
[29] Haag R., Swieca J. A., When does a quantum field theory describe particles?, Comm. Math. Phys., 1 (1965), 308–320 | DOI | MR | Zbl
[30] Hollands S., Wald R. M., “Quantum field theory is not merely quantum mechanics applied to low energy effective degrees of freedom”, Gen. Relativity Gravitation, 36 (2004), 2595–2603, arXiv: gr-qc/0405082 | DOI | MR | Zbl
[31] Jaffe A.M., “High-energy behavior in quantum field theory. I: Strictly localizable fields”, Phys. Rev., 158 (1967), 1454–1461 | DOI
[32] Jost R., “TCP-Invarianz der Streumatrix und interpolierende Felder”, Helvetica Phys. Acta, 36 (1963), 77–82 | DOI | Zbl
[33] Kähler R., Wiesbrock H.-W., “Modular theory and the reconstruction of four-dimensional quantum field theories”, J. Math. Phys., 42 (2001), 74–86 | DOI | MR
[34] Kawahigashi Y., Longo R., “Local conformal nets arising from framed vertex operator algebras”, Adv. Math., 206 (2006), 729–751, arXiv: math.OA/0407263 | DOI | MR | Zbl
[35] Kay B. S., Ortíz L., “Brick walls and {A}d{S}/{CFT}”, Gen. Relativity Gravitation, 46 (2014), 1727, 55 pp., arXiv: 1111.6429 | DOI | MR
[36] Lechner G., “An existence proof for interacting quantum field theories with a factorizing $S$-matrix”, Comm. Math. Phys., 227 (2008), 821–860, arXiv: math-ph/0601022 | DOI | MR
[37] Lechner G., “Deformations of quantum field theories and integrable models”, Comm. Math. Phys., 312 (2012), 265–302, arXiv: 1104.1948 | DOI | MR | Zbl
[38] Lowe D. A., “Causal properties of free string field theory”, Phys. Lett. B, 326 (1994), 223–230, arXiv: hep-th/9312107 | DOI
[39] Lowenstein J. H., Swieca J. A., “Quantum electrodynamics in two dimensions”, Ann. Physics, 68 (1971), 172–195 | DOI | MR
[40] Lüscher M., Mack G., “Global conformal invariance in quantum field theory”, Comm. Math. Phys., 41 (1975), 203–234 | DOI | MR
[41] Mack G., $D$-independent representation of conformal field theories in $D$ dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv: 0907.2407
[42] Mack G., {$D$}-dimensional conformal field theories with anomalous dimensions as dual resonance models, 2009, arXiv: 0909.1024 | MR
[43] Majorana E., “Teoria relativistica di particelle con momentum internisico arbitrario”, Nuovo Cimento, 9 (1932), 335–344 | DOI
[44] Maldacena J., “The illusion of gravity”, Sci. Amer., 293:5 (2005), 56–63 | DOI | MR
[45] Mandelstam S., “Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. {G}eneral theory”, Phys. Rev., 112 (1958), 1344–1360 | DOI | MR
[46] Mandelstam S., “Analytic properties of transition amplitudes in perturbation theory”, Phys. Rev., 115 (1959), 1741–1751 | DOI | MR
[47] Mandelstam S., “Feynman rules for electromagnetic and Yang–Mills fields from the gauge-independent field-theoretic formalism”, Phys. Rev., 175 (1968), 1580–1603 | DOI
[48] Martinec E., “The light cone in string theory”, Classical Quantum Gravity, 10 (1993), L187–L192, arXiv: hep-th/9304037 | DOI | MR | Zbl
[49] Mund J., “An algebraic {J}ost–{S}chroer theorem for massive theories”, Comm. Math. Phys., 315 (2012), 445–464, arXiv: 1012.1454 | DOI | MR | Zbl
[50] Mund J., String-localized massive vector bosons without ghosts and indefinite metric: the example of massive QED, in preparation
[51] Mund J., Schroer B., Renormalization theory of string-localized self-coupled massive vectormesons in Hilbert space, in preparation
[52] Mund J., Schroer B., Yngvason J., “String-localized quantum fields and modular localization”, Comm. Math. Phys., 268 (2006), 621–672, arXiv: math-ph/0511042 | DOI | MR | Zbl
[53] Plaschke M., Yngvason J., “Massless, string localized quantum fields for any helicity”, J. Math. Phys., 53 (2012), 042301, 15 pp., arXiv: 1111.5164 | DOI | MR | Zbl
[54] Polchinski J., String theory. I. An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1998 | MR
[55] Rehren K.-H., “Local quantum observables in the anti-de-{S}itter — conformal {QFT} correspondence”, Phys. Lett. B, 493 (2000), 383–388, arXiv: hep-th/0003120 | DOI | MR
[56] Scharf G., Quantum gauge theories. A true ghost story, John Wiley Sons, New York, 2001 | MR
[57] Schroer B., “Modular localization and the bootstrap-formfactor program”, Nuclear Phys. B, 499 (1997), 547–568, arXiv: hep-th/9702145 | DOI | MR | Zbl
[58] Schroer B., “Modular wedge localization and the {$d=1+1$} formfactor program”, Ann. Physics, 275 (1999), 190–223, arXiv: hep-th/9712124 | DOI | MR | Zbl
[59] Schroer B., Jorge A., “Swieca's contributions to quantum field theory in the 60s and 70s and their relevance in present research”, Eur. Phys. J. H, 35 (2010), 53–88, arXiv: 0712.0371 | DOI
[60] Schroer B., “Localization and the interface between quantum mechanics, quantum field theory and quantum gravity. {I}: The two antagonistic localizations and their asymptotic compatibility”, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys., 41 (2010), 104–127, arXiv: 0912.2874 | DOI | MR | Zbl
[61] Schroer B., Unexplored regions in QFT and the conceptual foundations of the Standard Model, arXiv: 1006.3543
[62] Schroer B., “An alternative to the gauge theoretic setting”, Found. Phys., 41 (2011), 1543–1568, arXiv: 1012.0013 | DOI | MR | Zbl
[63] Schroer B., “Modular localization and the foundational origin of integrability”, Found. Phys., 43 (2013), 329–372, arXiv: 1109.1212 | DOI | MR | Zbl
[64] Schroer B., “Causality and dispersion relations and the role of the {$S$}-matrix in the ongoing research”, Found. Phys., 42 (2012), 1481–1522, arXiv: 1107.1374 | DOI | MR | Zbl
[65] Schroer B., “The Einstein–Jordan conundrum and its relation to ongoing foundational research in local quantum physics”, Eur. Phys. J. H, 38 (2013), 137–173, arXiv: 1101.0569 | DOI
[66] Schroer B., Dark matter and Wigner's third positive-energy representation class, arXiv: 1306.3876
[67] Schroer B., A Hilbert space setting for interacting higher spin fields and the Higgs issue, arXiv: 1407.0365
[68] Schroer B., Swieca J. A., “Conformal transformations for quantized fields”, Phys. Rev. D, 10 (1974), 480–485 | DOI | MR
[69] Schwinger J., Trieste lectures, IAEA, Vienna, 1963
[70] Sewell G., “Quantum fields on manifolds: {PCT} and gravitationally induced thermal states”, Ann. Physics, 141 (1982), 201–224 | DOI | MR
[71] Staskiewicz C. P., Die lokale Struktur abelscher Stromalgebren auf dem Kreis, Ph. D. Thesis, Freie Universität Berlin, 1995
[72] Streater R. F., Wightman A. S., P{CT}, spin and statistics, and all that, W. A. Benjamin, Inc., New York–Amsterdam, 1964 | MR | Zbl
[73] Swieca J. A., “Charge screening and mass spectrum”, Phys. Rev. D, 13 (1976), 312–314 | DOI
[74] Unruh W. G., “Notes on black-hole evaporation”, Phys. Rev. D, 14 (1976), 870–892 | DOI
[75] Veneziano G., “Construction of a crossing-simmetric, Regge-behaved amplitude for linearly rising trajectories”, Nuovo Cimento A, 57 (1968), 190–197 | DOI
[76] Weinberg S., The quantum theory of fields, v. I, Foundations, Cambridge University Press, Cambridge, 2005 | MR
[77] Yennie D., Frautschi S., Suura H., “The infrared divergence phenomena and high-energy processes”, Ann. Physics, 13 (1961), 379–452 | DOI
[78] Yngvason J., “Zero-mass infinite spin representations of the {P}oincaré group and quantum field theory”, Comm. Math. Phys., 18 (1970), 195–203 | DOI | MR | Zbl