A Compact Formula for Rotations as Spin Matrix Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Group elements of $\mathrm{SU}(2)$ are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. The simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.
Keywords: spin matrices; matrix exponentials.
@article{SIGMA_2014_10_a83,
     author = {Thomas L. Curtright and David B. Fairlie and Cosmas K. Zachos},
     title = {A {Compact} {Formula} for {Rotations} as {Spin} {Matrix} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a83/}
}
TY  - JOUR
AU  - Thomas L. Curtright
AU  - David B. Fairlie
AU  - Cosmas K. Zachos
TI  - A Compact Formula for Rotations as Spin Matrix Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a83/
LA  - en
ID  - SIGMA_2014_10_a83
ER  - 
%0 Journal Article
%A Thomas L. Curtright
%A David B. Fairlie
%A Cosmas K. Zachos
%T A Compact Formula for Rotations as Spin Matrix Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a83/
%G en
%F SIGMA_2014_10_a83
Thomas L. Curtright; David B. Fairlie; Cosmas K. Zachos. A Compact Formula for Rotations as Spin Matrix Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a83/

[1] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass. – London – Don Mills, Ont., 1969 | MR | Zbl

[2] Butzer P. L., Schmidt M., Stark E. L., Vogt L., “Central factorial numbers; their main properties and some applications”, Numer. Funct. Anal. Optim., 10 (1989), 419–488 | DOI | MR | Zbl

[3] Curtright T. L., Van Kortryk T. S., On rotations as spin matrix polynomials, arXiv: 1408.0767

[4] Euler L., “Problema algebraicum ob affectiones prorsus singulares memorabile”, Commentatio 407 Indicis Enestoemiani, Novi Comm. Acad. Sci. Petropolitanae, 15 (1770), 75–106

[5] Lehrer-Ilamed Y., “On the direct calculations of the representations of the three-dimensional pure rotation group”, Math. Proc. Cambridge Philos. Soc., 60 (1964), 61–66 | DOI | MR | Zbl

[6] Macon N., Spitzbart A., “Inverses of {V}andermonde matrices”, Amer. Math. Monthly, 65 (1958), 95–100 | DOI | MR | Zbl

[7] Nelson T. J., “Spin-matrix polynomials and the Veneziano formula”, Phys. Rev., 184 (1969), 1954–1955 | DOI

[8] Nikitin A. G., “Laplace–{R}unge–{L}enz vector for arbitrary spin”, J. Math. Phys., 54 (2013), 123506, 14 pp., arXiv: 1308.4279 | DOI | MR | Zbl

[9] Pinsky M. A., Introduction to {F}ourier analysis and wavelets, Graduate Studies in Mathematics, 102, Amer. Math. Soc., Providence, RI, 2009 | MR | Zbl

[10] Rodrigues O., “Des lois géometriques qui regissent les déplacements d' un systéme solide dans l' espace, et de la variation des coordonnées provenant de ces déplacement considerées indépendent des causes qui peuvent les produire”, J. Math. Pures Appl., 5 (1840), 380–400

[11] Schwinger J., On angular momentum, report NYO-3071, Harvard University, Nuclear Development Associates, Inc. (US), 1952

[12] Torruella A. J., “Representations of the three-dimensional rotation group by the direct method”, J. Math. Phys., 16 (1975), 1637–1642 | DOI | MR | Zbl

[13] van Wageningen R., “Explicit polynomial expressions for finite rotation operators”, Nuclear Phys., 60 (1964), 250–263 | DOI | MR | Zbl

[14] Weber T. A., Williams S. A., “Spin-matrix polynomials and the rotation operator for arbitrary spin”, J. Math. Phys., 6 (1965), 1980–1983 | DOI | MR

[15] Wigner E. P., Group theory and its application to the quantum mechanics of atomic spectra, Pure and Applied Physics, 5, Academic Press, New York–London, 1959 | MR | Zbl

[16] Williams S. A., Draayer J. P., Weber T. A., “Spin-matrix polynomial development of the Hamiltonian for a free particle of arbitrary spin and mass”, Phys. Rev., 152 (1966), 1207–1212 | DOI

[17] Zygmund A., Trigonometric series, v. I, II, Cambridge University Press, London–New York, 1968 | MR