Generalised Chern–Simons Theory and $\mathrm{G}_2$-Instantons over Associative Fibrations
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Adjusting conventional Chern–Simons theory to $\mathrm{G}_2$-manifolds, one describes $\mathrm{G}_2$-instantons on bundles over a certain class of $7$-dimensional flat tori which fiber non-trivially over $T^4$, by a pullback argument. Moreover, if $c_2\neq0$, any (generic) deformation of the $\mathrm{G}_2$-structure away from such a fibred structure causes all instantons to vanish. A brief investigation in the general context of (conformally compatible) associative fibrations $f:Y^7\to X^4$ relates $\mathrm{G}_2$-instantons on pullback bundles $f^*E\to Y$ and self-dual connections on the bundle $E\to X$ over the base, a fact which may be of independent interest.
Keywords: Chern–Simons; Yang–Mills; $\mathrm{G}_2$-manifolds; associative fibrations.
@article{SIGMA_2014_10_a82,
     author = {Henrique N. S\'a Earp},
     title = {Generalised {Chern{\textendash}Simons} {Theory} and $\mathrm{G}_2${-Instantons} over {Associative} {Fibrations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a82/}
}
TY  - JOUR
AU  - Henrique N. Sá Earp
TI  - Generalised Chern–Simons Theory and $\mathrm{G}_2$-Instantons over Associative Fibrations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a82/
LA  - en
ID  - SIGMA_2014_10_a82
ER  - 
%0 Journal Article
%A Henrique N. Sá Earp
%T Generalised Chern–Simons Theory and $\mathrm{G}_2$-Instantons over Associative Fibrations
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a82/
%G en
%F SIGMA_2014_10_a82
Henrique N. Sá Earp. Generalised Chern–Simons Theory and $\mathrm{G}_2$-Instantons over Associative Fibrations. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a82/

[1] Bryant R. L., “Metrics with holonomy {${\rm G}_2$} or {${\rm Spin}(7)$}”, Lecture Notes in Math., 1111, Springer, Berlin, 1985, 269–277 | DOI | MR

[2] Clarke A., Instantons on the exceptional holonomy manifolds of {B}ryant and {S}alamon, arXiv: 1308.6358

[3] Donaldson S. K., Floer homology groups in {Y}ang–{M}ills theory, Cambridge Tracts in Mathematics, 147, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl

[4] Donaldson S. K., Thomas R. P., “Gauge theory in higher dimensions”, The Geometric Universe ({O}xford, 1996), Oxford University Press, Oxford, 1998, 31–47 | MR | Zbl

[5] Harland D., Ivanova T. A., Lechtenfeld O., Popov A. D., “Yang–{M}ills flows on nearly {K}ähler manifolds and {${\rm G}_2$}-instantons”, Comm. Math. Phys., 300 (2010), 185–204, arXiv: 0909.2730 | DOI | MR | Zbl

[6] Harvey R., Lawson H. B. (Jr.), “Calibrated geometries”, Acta Math., 148 (1982), 47–157 | DOI | MR | Zbl

[7] Ivanova T. A., Popov A. D., “Instantons on special holonomy manifolds”, Phys. Rev. D, 85 (2012), 105012, 10 pp., arXiv: 1203.2657 | DOI

[8] Joyce D. D., Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000 | MR | Zbl

[9] McLean R. C., “Deformations of calibrated submanifolds”, Comm. Anal. Geom., 6 (1998), 705–747 | MR | Zbl

[10] Milnor J. W., Stasheff J. D., Characteristic classes, Princeton University Press, Princeton, N.J., 1974 | MR | Zbl

[11] Sá Earp H. N., Instantons on ${\rm G}_2$-manifolds, Ph. D. Thesis, Imperial College London, 2009

[12] Sá Earp H. N., “${\rm G}_2$-instantons over asymptotically cylindrical manifolds”, Geom. Topol. (to appear) , arXiv: 1101.0880

[13] Sá Earp H. N., Walpuski T., “${\rm G}_2$-instantons on twisted connected sums”, Geom. Topol. (to appear) , arXiv: 1310.7933

[14] Salamon S., Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics Series, 201, Longman Scientific Technical, Harlow, 1989 | MR | Zbl

[15] Thomas R. P., Gauge theory on {C}alabi–{Y}au manifolds, Ph. D. Thesis, Oxford University, 1997

[16] Tian G., “Gauge theory and calibrated geometry, I”, Ann. of Math., 151 (2000), 193–268, arXiv: math.DG/0010015 | DOI | MR | Zbl

[17] Walpuski T., “{$\rm G_2$}-instantons on generalised {K}ummer constructions”, Geom. Topol., 17 (2013), 2345–2388, arXiv: 1109.6609 | DOI | MR | Zbl

[18] Wang S., “A higher dimensional foliated {D}onaldson theory, I”, Asian J. Math. (to appear) , arXiv: 1212.6774