@article{SIGMA_2014_10_a81,
author = {Alfons Van Daele},
title = {Locally {Compact} {Quantum} {Groups.} {A~von} {Neumann} {Algebra} {Approach}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a81/}
}
Alfons Van Daele. Locally Compact Quantum Groups. A von Neumann Algebra Approach. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a81/
[1] Abe E., Hopf algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, Cambridge–New York, 1980 | MR | Zbl
[2] Baaj S., Skandalis G., “Unitaires multiplicatifs et dualité pour les produits croisés de {$C^*$}-algèbres”, Ann. Sci. École Norm. Sup. (4), 26 (1993), 425–488 | MR | Zbl
[3] Delvaux L., Van Daele A., “The {D}rinfel'd double versus the {H}eisenberg double for an algebraic quantum group”, J. Pure Appl. Algebra, 190 (2004), 59–84 | DOI | MR | Zbl
[4] Enock M., Schwartz J.-M., Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[5] Kirchberg E., Discrete and compact quantum Kac algebras, {L}ecture at the Conference ‘Invariance in Operator Algebras’ (Copenhagen, August 1992), unpublished
[6] Kustermans J., Vaes S., “A simple definition for locally compact quantum groups”, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 871–876 | DOI | MR | Zbl
[7] Kustermans J., Vaes S., “Locally compact quantum groups”, Ann. Sci. École Norm. Sup. (4), 33 (2000), 837–934 | DOI | MR | Zbl
[8] Kustermans J., Vaes S., “The operator algebra approach to quantum groups”, Proc. Natl. Acad. Sci. USA, 97 (2000), 547–552 | DOI | MR | Zbl
[9] Kustermans J., Vaes S., “Locally compact quantum groups in the von {N}eumann algebraic setting”, Math. Scand., 92 (2003), 68–92, arXiv: math.OA/0005219 | MR | Zbl
[10] Maes A., Van Daele A., “Notes on compact quantum groups”, Nieuw Arch. Wisk. (4), 16 (1998), 73–112, arXiv: math.FA/9803122 | MR | Zbl
[11] Maes A., Van Daele A., The multiplicative unitary as a basis for duality, arXiv: math.OA/0205284 | MR
[12] Masuda T., Nakagami Y., “A von {N}eumann algebra framework for the duality of the quantum groups”, Publ. Res. Inst. Math. Sci., 30 (1994), 799–850 | DOI | MR | Zbl
[13] Masuda T., Nakagami Y., Woronowicz S. L., “A {$C^\ast$}-algebraic framework for quantum groups”, Internat. J. Math., 14 (2003), 903–1001, arXiv: math.QA/0309338 | DOI | MR | Zbl
[14] Radford D. E., “The order of the antipode of a finite dimensional {H}opf algebra is finite”, Amer. J. Math., 98 (1976), 333–355 | DOI | MR | Zbl
[15] Sołtan P. M., Woronowicz S. L., “A remark on manageable multiplicative unitaries”, Lett. Math. Phys., 57 (2001), 239–252, arXiv: math.OA/0604614 | DOI | MR
[16] Str{ă}til{ă} {Ş}., Modular theory in operator algebras, Abacus Press, Tunbridge Wells, 1981 | MR | Zbl
[17] Str{ă}til{ă} S., Voiculescu D., Zsidó L., “Sur les produits croisés”, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A779–A782 | MR
[18] Str{ă}til{ă} {Ş}., Voiculescu D., Zsidó L., “On crossed products, {I}”, Rev. Roumaine Math. Pures Appl., 21 (1976), 1411–1449 | MR | Zbl
[19] Str{ă}til{ă} {Ş}., Voiculescu D., Zsidó L., “On crossed products, {II}”, Rev. Roumaine Math. Pures Appl., 22 (1977), 83–117 | MR | Zbl
[20] Str{ă}til{ă} {Ş}., Zsidó L., Lectures on von {N}eumann algebras, Abacus Press, Tunbridge Wells, 1979 | Zbl
[21] Sweedler M. E., Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969 | MR | Zbl
[22] Takesaki M., Tomita's theory of modular {H}ilbert algebras and its applications, Lecture Notes in Mathematics, 128, Springer-Verlag, Berlin–New York, 1970 | MR | Zbl
[23] Takesaki M., Theory of operator algebras, v. I, Springer-Verlag, New York–Heidelberg, 1979 | DOI | MR
[24] Takesaki M., Theory of operator algebras, v. II, Springer-Verlag, New York–Heidelberg, 2003 | DOI
[25] Timmermann T., An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008 | DOI | MR | Zbl
[26] Vaes S., Locally compact quantum groups, Ph. D. Thesis, University of Leuven, 2001
[27] Vaes S., “A {R}adon–{N}ikodym theorem for von {N}eumann algebras”, J. Operator Theory, 46 (2001), 477–489 | MR | Zbl
[28] Vaes S., Van Daele A., “Hopf {$C^*$}-algebras”, Proc. London Math. Soc., 82 (2001), 337–384, arXiv: math.OA/9907030 | DOI | MR | Zbl
[29] Vaĭnerman L. {\u{I}}., Kac G. I., “Nonunimodular ring groups and {H}opf–von {N}eumann algebras”, Math. USSR Sb., 23 (1974), 185–214 | DOI
[30] Van Daele A., “Dual pairs of {H}opf {$*$}-algebras”, Bull. London Math. Soc., 25 (1993), 209–230 | DOI | MR | Zbl
[31] Van Daele A., “Multiplier {H}opf algebras”, Trans. Amer. Math. Soc., 342 (1994), 917–932 | DOI | MR | Zbl
[32] Van Daele A., “Discrete quantum groups”, J. Algebra, 180 (1996), 431–444 | DOI | MR | Zbl
[33] Van Daele A., “An algebraic framework for group duality”, Adv. Math., 140 (1998), 323–366 | DOI | MR | Zbl
[34] Van Daele A., “Quantum groups with invariant integrals”, Proc. Natl. Acad. Sci. USA, 97 (2000), 541–546 | DOI | MR | Zbl
[35] Van Daele A., The Haar measure on some locally compact quantum groups, arXiv: math.OA/0109004
[36] Van Daele A., “Locally compact quantum groups: the von {N}eumann algebra versus the {$C^*$}-algebra approach”, Bull. Kerala Math. Assoc., 2005, 153–177 | MR
[37] Van Daele A., Notes on locally compact quantum groups, in preparation
[38] Woronowicz S. L., “From multiplicative unitaries to quantum groups”, Internat. J. Math., 7 (1996), 127–149 | DOI | MR | Zbl
[39] Woronowicz S. L., “Compact quantum groups”, Symétries quantiques ({L}es {H}ouches, 1995), North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl