Werner's Measure on Self-Avoiding Loops and Welding
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Werner's conformally invariant family of measures on self-avoiding loops on Riemann surfaces is determined by a single measure $\mu_0$ on self-avoiding loops in $\mathbb C \setminus\{0\}$ which surround $0$. Our first major objective is to show that the measure $\mu_0$ is infinitesimally invariant with respect to conformal vector fields (essentially the Virasoro algebra of conformal field theory). This makes essential use of classical variational formulas of Duren and Schiffer, which we recast in representation theoretic terms for efficient computation. We secondly show how these formulas can be used to calculate (in principle, and sometimes explicitly) quantities (such as moments for coefficients of univalent functions) associated to the conformal welding for a self-avoiding loop. This gives an alternate proof of the uniqueness of Werner's measure. We also attempt to use these variational formulas to derive a differential equation for the (Laplace transform of) the “diagonal distribution” for the conformal welding associated to a loop; this generalizes in a suggestive way to a deformation of Werner's measure conjectured to exist by Kontsevich and Suhov (a basic inspiration for this paper).
Keywords: loop measures; conformal welding; conformal invariance; moments; Virasoro algebra.
@article{SIGMA_2014_10_a80,
     author = {Angel Chavez and Doug Pickrell},
     title = {Werner's {Measure} on {Self-Avoiding} {Loops} and {Welding}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a80/}
}
TY  - JOUR
AU  - Angel Chavez
AU  - Doug Pickrell
TI  - Werner's Measure on Self-Avoiding Loops and Welding
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a80/
LA  - en
ID  - SIGMA_2014_10_a80
ER  - 
%0 Journal Article
%A Angel Chavez
%A Doug Pickrell
%T Werner's Measure on Self-Avoiding Loops and Welding
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a80/
%G en
%F SIGMA_2014_10_a80
Angel Chavez; Doug Pickrell. Werner's Measure on Self-Avoiding Loops and Welding. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a80/

[1] Airault H., Malliavin P., Thalmaier A., “Brownian measures on {J}ordan–{V}irasoro curves associated to the {W}eil–{P}etersson metric”, J. Funct. Anal., 259 (2010), 3037–3079 | DOI | MR | Zbl

[2] Astala K., Jones P., Kupiainen A., Saksman E., “Random curves by conformal welding”, C. R. Math. Acad. Sci. Paris, 348 (2010), 257–262, arXiv: 0912.3423 | DOI | MR | Zbl

[3] Bauer R. O., “A simple construction of {W}erner measure from chordal ${\rm SLE}_{8/3}$”, Illinois J. Math., 54 (2010), 1429–1449, arXiv: 0902.1626 | MR | Zbl

[4] Benoist S., Dubédat J., An ${\rm SLE}_2$ loop measure, arXiv: 1405.7880

[5] Bishop C. J., “Conformal welding and {K}oebe's theorem”, Ann. of Math., 166 (2007), 613–656 | DOI | MR | Zbl

[6] Cardy J., “The {${\rm O}(n)$} model on the annulus”, J. Stat. Phys., 125 (2006), 1–21, arXiv: math-ph/0604043 | DOI | MR | Zbl

[7] Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997 | DOI | MR

[8] Duren P. L., Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983 | MR | Zbl

[9] Duren P. L., Schiffer M., “The theory of the second variation in extremum problems for univalent functions”, J. Analyse Math., 10 (1962/1963), 193–252 | DOI | MR

[10] Hille E., Analytic function theory, v. II, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.–New York–Toronto, Ont., 1962 | MR | Zbl

[11] Kac V. G., Raina A. K., Bombay lectures on highest weight representations of infinite-dimensional {L}ie algebras, Advanced Series in Mathematical Physics, 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987 | MR | Zbl

[12] Kirillov A. A., Yuriev D. V., “Representations of the {V}irasoro algebra by the orbit method”, J. Geom. Phys., 5 (1988), 351–363 | DOI | MR | Zbl

[13] Kontsevich M., Suhov Y., “On {M}alliavin measures, {SLE}, and {CFT}”, Proc. Steklov Inst. Math., 258, 2007, 100–146, arXiv: math-ph/0609056 | DOI | MR | Zbl

[14] Michael E., “Topologies on spaces of subsets”, Trans. Amer. Math. Soc., 71 (1951), 152–182 | DOI | MR | Zbl

[15] Segal G., “The definition of conformal field theory”, Topology, Geometry and Quantum Field Theory, Proceedings of the Symposium in Honour of the 60th Birthday of {G}raeme {S}egal ({O}xford, {J}une 24–29, 2002), London Mathematical Society Lecture Note Series, 308, ed. U. Tillmann, Cambridge University Press, Cambridge, 2004, 421–577 | DOI | MR | Zbl

[16] Simon B., “O{PUC} on one foot”, Bull. Amer. Math. Soc. (N.S.), 42 (2005), 431–460, arXiv: math.SP/0502485 | DOI | MR | Zbl

[17] Werner W., “The conformally invariant measure on self-avoiding loops”, J. Amer. Math. Soc., 21 (2008), 137–169, arXiv: math.PR/0511605 | DOI | MR | Zbl