@article{SIGMA_2014_10_a80,
author = {Angel Chavez and Doug Pickrell},
title = {Werner's {Measure} on {Self-Avoiding} {Loops} and {Welding}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a80/}
}
Angel Chavez; Doug Pickrell. Werner's Measure on Self-Avoiding Loops and Welding. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a80/
[1] Airault H., Malliavin P., Thalmaier A., “Brownian measures on {J}ordan–{V}irasoro curves associated to the {W}eil–{P}etersson metric”, J. Funct. Anal., 259 (2010), 3037–3079 | DOI | MR | Zbl
[2] Astala K., Jones P., Kupiainen A., Saksman E., “Random curves by conformal welding”, C. R. Math. Acad. Sci. Paris, 348 (2010), 257–262, arXiv: 0912.3423 | DOI | MR | Zbl
[3] Bauer R. O., “A simple construction of {W}erner measure from chordal ${\rm SLE}_{8/3}$”, Illinois J. Math., 54 (2010), 1429–1449, arXiv: 0902.1626 | MR | Zbl
[4] Benoist S., Dubédat J., An ${\rm SLE}_2$ loop measure, arXiv: 1405.7880
[5] Bishop C. J., “Conformal welding and {K}oebe's theorem”, Ann. of Math., 166 (2007), 613–656 | DOI | MR | Zbl
[6] Cardy J., “The {${\rm O}(n)$} model on the annulus”, J. Stat. Phys., 125 (2006), 1–21, arXiv: math-ph/0604043 | DOI | MR | Zbl
[7] Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997 | DOI | MR
[8] Duren P. L., Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983 | MR | Zbl
[9] Duren P. L., Schiffer M., “The theory of the second variation in extremum problems for univalent functions”, J. Analyse Math., 10 (1962/1963), 193–252 | DOI | MR
[10] Hille E., Analytic function theory, v. II, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.–New York–Toronto, Ont., 1962 | MR | Zbl
[11] Kac V. G., Raina A. K., Bombay lectures on highest weight representations of infinite-dimensional {L}ie algebras, Advanced Series in Mathematical Physics, 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987 | MR | Zbl
[12] Kirillov A. A., Yuriev D. V., “Representations of the {V}irasoro algebra by the orbit method”, J. Geom. Phys., 5 (1988), 351–363 | DOI | MR | Zbl
[13] Kontsevich M., Suhov Y., “On {M}alliavin measures, {SLE}, and {CFT}”, Proc. Steklov Inst. Math., 258, 2007, 100–146, arXiv: math-ph/0609056 | DOI | MR | Zbl
[14] Michael E., “Topologies on spaces of subsets”, Trans. Amer. Math. Soc., 71 (1951), 152–182 | DOI | MR | Zbl
[15] Segal G., “The definition of conformal field theory”, Topology, Geometry and Quantum Field Theory, Proceedings of the Symposium in Honour of the 60th Birthday of {G}raeme {S}egal ({O}xford, {J}une 24–29, 2002), London Mathematical Society Lecture Note Series, 308, ed. U. Tillmann, Cambridge University Press, Cambridge, 2004, 421–577 | DOI | MR | Zbl
[16] Simon B., “O{PUC} on one foot”, Bull. Amer. Math. Soc. (N.S.), 42 (2005), 431–460, arXiv: math.SP/0502485 | DOI | MR | Zbl
[17] Werner W., “The conformally invariant measure on self-avoiding loops”, J. Amer. Math. Soc., 21 (2008), 137–169, arXiv: math.PR/0511605 | DOI | MR | Zbl