The Heisenberg Relation — Mathematical Formulations
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study some of the possibilities for formulating the Heisenberg relation of quantum mechanics in mathematical terms. In particular, we examine the framework discussed by Murray and von Neumann, the family (algebra) of operators affiliated with a finite factor (of infinite linear dimension).
Keywords: Heisenberg relation; unbounded operator; finite von Neumann algebra; Type II$_1$ factor.
@article{SIGMA_2014_10_a8,
     author = {Richard V. Kadison and Zhe Liu},
     title = {The {Heisenberg} {Relation~{\textemdash}} {Mathematical} {Formulations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a8/}
}
TY  - JOUR
AU  - Richard V. Kadison
AU  - Zhe Liu
TI  - The Heisenberg Relation — Mathematical Formulations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a8/
LA  - en
ID  - SIGMA_2014_10_a8
ER  - 
%0 Journal Article
%A Richard V. Kadison
%A Zhe Liu
%T The Heisenberg Relation — Mathematical Formulations
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a8/
%G en
%F SIGMA_2014_10_a8
Richard V. Kadison; Zhe Liu. The Heisenberg Relation — Mathematical Formulations. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a8/

[1] Bernstein S., “Démonstration du théoréme de Weierstrass fondeé sur le calcul des probabilités”, Comm. Soc. Math. Kharkow, 13 (1912), 1–2 | Zbl

[2] Dirac P. A. M., The principles of quantum mechanics, Clarendon Press, Oxford, 1947 | MR

[3] Dixmier J., Les algèbres d'opérateurs dans lвЂTMespace hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris, 1969 | MR

[4] Graves L. M., The theory of functions of real variables, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1956 | MR | Zbl

[5] Heisenberg W., The physical principles of the quantum theory, University of Chicago Press, Chicago, 1930 | Zbl

[6] Hille E., Phillips R. S., Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, 31, Amer. Math. Soc., Providence, R.I., 1957 | MR | Zbl

[7] Kadison R. V., “Transformations of states in operator theory and dynamics”, Topology, 3, suppl. 2 (1965), 177–198 | DOI | MR | Zbl

[8] Kadison R. V., “Algebras of unbounded functions and operators”, Exposition. Math., 4 (1986), 3–33 | MR | Zbl

[9] Kadison R. V., “Operator algebras — an overview”, The Legacy of {J}ohn von {N}eumann ({H}empstead, {NY}, 1988), Proc. Sympos. Pure Math., 50, Amer. Math. Soc., Providence, RI, 1990, 61–89 | DOI | MR

[10] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. I, Pure and Applied Mathematics, 100, Elementary theory, Academic Press Inc., 1983 | MR | Zbl

[11] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. II, Pure and Applied Mathematics, 100, Advanced theory, Academic Press Inc., Orlando, FL, 1986 | MR | Zbl

[12] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. III, Elementary theory — an exercise approach, Birkhäuser Boston Inc., Boston, MA, 1991 | DOI

[13] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. IV, Advanced theory — an exercise approach, Birkhäuser Boston Inc., Boston, MA, 1992 | DOI | Zbl

[14] Liu Z., “On some mathematical aspects of the {H}eisenberg relation”, Sci. China Math., 54 (2011), 2427–2452 | DOI | MR | Zbl

[15] Mackey G. W., “Quantum mechanics and {H}ilbert space”, Amer. Math. Monthly, 64 (1957), 45–57 | DOI | MR | Zbl

[16] Murray F. J., Von Neumann J., “On rings of operators”, Ann. of Math., 37 (1936), 116–229 | DOI | MR

[17] Murray F. J., von Neumann J., “On rings of operators, II”, Trans. Amer. Math. Soc., 41 (1937), 208–248 | DOI | MR

[18] Murray F. J., von Neumann J., “On rings of operators, IV”, Ann. of Math., 44 (1943), 716–808 | DOI | MR | Zbl

[19] Stein E. M., Shakarchi R., Real analysis. Measure theory, integration, and Hilbert spaces, Princeton Lectures in Analysis, III, Princeton University Press, Princeton, NJ, 2005 | MR | Zbl

[20] Stone M. H., “On one-parameter unitary groups in {H}ilbert space”, Ann. of Math., 33 (1932), 643–648 | DOI | MR

[21] von Neumann J., “Zur {A}lgebra der {F}unktionaloperationen und {T}heorie der normalen {O}peratoren”, Math. Ann., 102 (1930), 370–427 | DOI | MR

[22] von Neumann J., “Die {E}indeutigkeit der {S}chrödingerschen {O}peratoren”, Math. Ann., 104 (1931), 570–578 | DOI | MR | Zbl

[23] von Neumann J., “On rings of operators, III”, Ann. of Math., 41 (1940), 94–161 | DOI | MR | Zbl

[24] von Neumann J., Mathematical foundations of quantum mechanics, Princeton University Press, Princeton, 1955 | MR | Zbl

[25] Wielandt H., “Über die {U}nbeschränktheit der {O}peratoren der {Q}uantenmechanik”, Math. Ann., 121 (1949), 21–21 | DOI | MR | Zbl

[26] Wintner A., “The unboundedness of quantum-mechanical matrices”, Phys. Rev., 71 (1947), 738–739 | DOI | MR | Zbl