The Variety of Integrable Killing Tensors on the 3-Sphere
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integrable Killing tensors are used to classify orthogonal coordinates in which the classical Hamilton–Jacobi equation can be solved by a separation of variables. We completely solve the Nijenhuis integrability conditions for Killing tensors on the sphere $S^3$ and give a set of isometry invariants for the integrability of a Killing tensor. We describe explicitly the space of solutions as well as its quotient under isometries as projective varieties and interpret their algebro-geometric properties in terms of Killing tensors. Furthermore, we identify all Stäckel systems in these varieties. This allows us to recover the known list of separation coordinates on $S^3$ in a simple and purely algebraic way. In particular, we prove that their moduli space is homeomorphic to the associahedron $K_4$.
Keywords: separation of variables; Killing tensors; Stäckel systems; integrability; algebraic curvature tensors.
@article{SIGMA_2014_10_a79,
     author = {Konrad Sch\"obel},
     title = {The {Variety} of {Integrable} {Killing} {Tensors} on the {3-Sphere}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a79/}
}
TY  - JOUR
AU  - Konrad Schöbel
TI  - The Variety of Integrable Killing Tensors on the 3-Sphere
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a79/
LA  - en
ID  - SIGMA_2014_10_a79
ER  - 
%0 Journal Article
%A Konrad Schöbel
%T The Variety of Integrable Killing Tensors on the 3-Sphere
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a79/
%G en
%F SIGMA_2014_10_a79
Konrad Schöbel. The Variety of Integrable Killing Tensors on the 3-Sphere. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a79/

[1] Ballesteros Á., Enciso A., Herranz F. J., Ragnisco O., “A maximally superintegrable system on an {$n$}-dimensional space of nonconstant curvature”, Phys. D, 237 (2008), 505–509, arXiv: math-ph/0612080 | DOI | MR | Zbl

[2] Benenti S., “Inertia tensors and {S}täckel systems in the {E}uclidean spaces”, Rend. Sem. Mat. Univ. Politec. Torino, 50 (1992), 315–341 | MR | Zbl

[3] Benenti S., “Orthogonal separable dynamical systems”, Differential Geometry and its Applications ({O}pava, 1992), Math. Publ., 1, Silesian Univ. Opava, Opava, 1993, 163–184 | MR | Zbl

[4] Benenti S., “Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems”, Acta Appl. Math., 87 (2005), 33–91 | DOI | MR | Zbl

[5] Benenti S., Chanu C., Rastelli G., “Remarks on the connection between the additive separation of the {H}amilton–{J}acobi equation and the multiplicative separation of the {S}chrödinger equation. {II}: {F}irst integrals and symmetry operators”, J. Math. Phys., 43 (2002), 5223–5253 | DOI | MR | Zbl

[6] Błaszak M., “Bi-{H}amiltonian representation of {S}täckel systems”, Phys. Rev. E, 79 (2009), 056607, 9 pp., arXiv: 0904.2070 | DOI | MR

[7] Bolsinov A. V., Matveev V. S., “Geometrical interpretation of {B}enenti systems”, J. Geom. Phys., 44 (2003), 489–506 | DOI | MR | Zbl

[8] Crampin M., “Conformal {K}illing tensors with vanishing torsion and the separation of variables in the {H}amilton–{J}acobi equation”, Differential Geom. Appl., 18 (2003), 87–102 | DOI | MR | Zbl

[9] Crampin M., “Projectively equivalent {R}iemannian spaces as quasi-bi-{H}amiltonian systems”, Acta Appl. Math., 77 (2003), 237–248 | DOI | MR | Zbl

[10] Crampin M., Sarlet W., “Bi-quasi-{H}amiltonian systems”, J. Math. Phys., 43 (2002), 2505–2517 | DOI | MR | Zbl

[11] Deeley R. J., Horwood J. T., McLenaghan R. G., Smirnov R. G., “Theory of algebraic invariants of vector spaces of {K}illing tensors: methods for computing the fundamental invariants”, Symmetry in Nonlinear Mathematical Physics, v. 3, Proceedings of Institute of Mathematics, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych, I. A. Yehorchenko, Institute of Mathematics, Kyiv, 2004, 1079–1086 | MR | Zbl

[12] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 1969, 75–109 | DOI | MR | Zbl

[13] Eisenhart L. P., “Separable systems of {S}täckel”, Ann. of Math., 35 (1934), 284–305 | DOI | MR

[14] Frolov V. P., Zelnikov A., Introduction to black hole physics, Oxford University Press, Oxford, 2011 | Zbl

[15] Horwood J. T., McLenaghan R. G., Smirnov R. G., “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space”, Comm. Math. Phys., 259 (2005), 670–709, arXiv: math-ph/0605023 | DOI | MR

[16] Ibort A., Magri F., Marmo G., “Bihamiltonian structures and {S}täckel separability”, J. Geom. Phys., 33 (2000), 210–228 | DOI | MR | Zbl

[17] Kalnins E. G., Separation of variables for {R}iemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow, 1986 | MR | Zbl

[18] Kalnins E. G., Kress J. M., Miller Jr. W., “Superintegrability in a non-conformally-flat space”, J. Phys. A: Math. Theor., 46 (2013), 022002, 12 pp., arXiv: 1211.1452 | DOI | MR

[19] Kalnins E. G., Kress J. M., Miller Jr. W., Winternitz P., “Superintegrable systems in {D}arboux spaces”, J. Math. Phys., 44 (2003), 5811–5848, arXiv: math-ph/0307039 | DOI | MR | Zbl

[20] Kalnins E. G., Kress J. M., Winternitz P., “Superintegrability in a two-dimensional space of nonconstant curvature”, J. Math. Phys., 43 (2002), 970–983, arXiv: math-ph/0108015 | DOI | MR | Zbl

[21] Kalnins E. G., Kuznetsov V. B., Miller Jr. W., “Quadrics on complex {R}iemannian spaces of constant curvature, separation of variables, and the {G}audin magnet”, J. Math. Phys., 35 (1994), 1710–1731, arXiv: hep-th/9308109 | DOI | MR | Zbl

[22] Kalnins E. G., Miller Jr. W., “Separation of variables on {$n$}-dimensional {R}iemannian manifolds. I: {T}he {$n$}-sphere {$S^n$} and {E}uclidean {$n$}-space {$R^n$}”, J. Math. Phys., 27 (1986), 1721–1736 | DOI | MR | Zbl

[23] Kalnins E. G., Miller Jr. W., Winternitz P., “The group {${\rm O}(4)$}, separation of variables and the hydrogen atom”, SIAM J. Appl. Math., 30 (1976), 630–664 | DOI | MR | Zbl

[24] Knudsen F. F., “The projectivity of the moduli space of stable curves. {II}: {T}he stacks {$M_{g,n}$}”, Math. Scand., 52 (1983), 161–199 | MR | Zbl

[25] Knudsen F. F., “The projectivity of the moduli space of stable curves. {III}: The line bundles on {$M_{g,n}$}, and a proof of the projectivity of {$\bar M_{g,n}$} in characteristic 0”, Math. Scand., 52 (1983), 200–212 | MR | Zbl

[26] Koenigs G. X. P., “Sur les géodésiques a integrales quadratiques”, Le{ c}ons sur la théorie générale des surfaces, v. 4, ed. J. G. Darboux, Chelsea Publishing, 1972, 368–404

[27] Kuznetsov V. B., “Equivalence of two graphical calculi”, J. Phys. A: Math. Gen., 25 (1992), 6005–6026 | DOI | MR | Zbl

[28] Kuznetsov V. B., “Quadrics on real {R}iemannian spaces of constant curvature: separation of variables and connection with {G}audin magnet”, J. Math. Phys., 33 (1992), 3240–3254 | DOI | MR | Zbl

[29] Lamé G., “Sur les surfaces isothermes dans les corps homogènes en équilibre de température”, J. Math. Pures Appl., 2 (1837), 147–188

[30] Levi-Civita T., “Sulla integrazione della equazione di {H}amilton–{J}acobi per separazione di variabili”, Math. Ann., 59 (1904), 383–397 | DOI | MR | Zbl

[31] Lundmark H., Newton systems of cofactor type in {E}uclidean and {R}iemannian spaces, Dissertations, Linköping Studies in Science and Technology, 719, Linköping, 2001

[32] Matveev V. S., Mounoud P., “Gallot–{T}anno theorem for closed incomplete pseudo-{R}iemannian manifolds and applications”, Ann. Global Anal. Geom., 38 (2010), 259–271, arXiv: 0909.5344 | DOI | MR | Zbl

[33] Matveev V. S., Topalov P. {\u{I}}., “Trajectory equivalence and corresponding integrals”, Regul. Chaotic Dyn., 3 (1998), 30–45 | DOI | MR | Zbl

[34] McLenaghan R. G., Milson R., Smirnov R. G., “Killing tensors as irreducible representations of the general linear group”, C. R. Math. Acad. Sci. Paris, 339 (2004), 621–624 | DOI | MR | Zbl

[35] Milson R., Schöbel K., Integrable {K}illing tensors on $3$-dimensional constant curvature spaces, in preparation

[36] Neumann C., “De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur”, J. Reine Angew. Math., 56 (1859), 46–63 | DOI | Zbl

[37] Nijenhuis A., “{$X_{n-1}$}-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A., 54 (1951), 200–212 | MR | Zbl

[38] Olevskiĭ M. N., “Triorthogonal systems in spaces of constant curvature in which the equation {$\Delta_2u+\lambda u=0$} allows a complete separation of variables”, Mat. Sb., 27 (1950), 379–426 | MR | Zbl

[39] Painlevé P., “Sur les intégrales quadratiques des équations de la dynamique”, Compt. Rend., 124 (1897), 221–224 | Zbl

[40] Rauch-Wojciechowski S., Marciniak K., Lundmark H., “Quasi-{L}agrangian systems of {N}ewton equations”, J. Math. Phys., 40 (1999), 6366–6398, arXiv: solv-int/9909025 | DOI | MR | Zbl

[41] Schöbel K. P., “Algebraic integrability conditions for {K}illing tensors on constant sectional curvature manifolds”, J. Geom. Phys., 62 (2012), 1013–1037, arXiv: 1004.2872 | DOI | MR | Zbl

[42] Schöbel K. P., Veselov A. P., Separation coordinates, moduli spaces and {S}tasheff polytopes, arXiv: 1307.6132

[43] Singer I. M., Thorpe J. A., “The curvature of {$4$}-dimensional {E}instein spaces”, Global {A}nalysis, {P}apers in {H}onor of {K}. {K}odaira, Univ. Tokyo Press, Tokyo, 1969, 355–365 | MR

[44] Sinjukov N. S., “On the theory of a geodesic mapping of {R}iemannian spaces”, Dokl. Akad. Nauk SSSR, 169 (1966), 770–772 | MR

[45] Stäckel P., Die {I}ntegration der {H}amilton–{J}acobischen {D}ifferentialgleichung mittelst {S}eparation der {V}ariablen, Habilitationsschrift, Universität Halle, Halle, 1891

[46] Stasheff J. D., “Homotopy associativity of {$H$}-spaces, I”, Trans. Amer. Math. Soc., 108 (1963), 275–292 | DOI | MR | Zbl