Group Momentum Space and Hopf Algebra Symmetries of Point Particles Coupled to $2+1$ Gravity
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present an in-depth investigation of the $\mathrm{SL}(2,\mathbb{R})$ momentum space describing point particles coupled to Einstein gravity in three space-time dimensions. We introduce different sets of coordinates on the group manifold and discuss their properties under Lorentz transformations. In particular we show how a certain set of coordinates exhibits an upper bound on the energy under deformed Lorentz boosts which saturate at the Planck energy. We discuss how this deformed symmetry framework is generally described by a quantum deformation of the Poincaré group: the quantum double of $\mathrm{SL}(2,\mathbb{R})$. We then illustrate how the space of functions on the group manifold momentum space has a dual representation on a non-commutative space of coordinates via a (quantum) group Fourier transform. In this context we explore the connection between Weyl maps and different notions of (quantum) group Fourier transform appeared in the literature in the past years and establish relations between them.
Keywords: $2+1$ gravity; Lie group momentum space; deformed symmetries; Hopf algebra.
@article{SIGMA_2014_10_a78,
     author = {Michele Arzano and Danilo Latini and Matteo Lotito},
     title = {Group {Momentum} {Space} and {Hopf} {Algebra} {Symmetries} of {Point} {Particles} {Coupled} to $2+1$ {Gravity}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a78/}
}
TY  - JOUR
AU  - Michele Arzano
AU  - Danilo Latini
AU  - Matteo Lotito
TI  - Group Momentum Space and Hopf Algebra Symmetries of Point Particles Coupled to $2+1$ Gravity
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a78/
LA  - en
ID  - SIGMA_2014_10_a78
ER  - 
%0 Journal Article
%A Michele Arzano
%A Danilo Latini
%A Matteo Lotito
%T Group Momentum Space and Hopf Algebra Symmetries of Point Particles Coupled to $2+1$ Gravity
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a78/
%G en
%F SIGMA_2014_10_a78
Michele Arzano; Danilo Latini; Matteo Lotito. Group Momentum Space and Hopf Algebra Symmetries of Point Particles Coupled to $2+1$ Gravity. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a78/

[1] Agostini A., Amelino-Camelia G., Arzano M., D'Andrea F., “A cyclic integral on $\kappa$-Minkowski noncommutative space-time”, Internat. J. Modern Phys. A, 21 (2006), 3133–3150 | DOI | MR | Zbl

[2] Agostini A., Amelino-Camelia G., D'Andrea F., “Hopf-algebra description of noncommutative-space-time symmetries”, Internat. J. Modern Phys. A, 19 (2004), 5187–5219, arXiv: hep-th/0306013 | DOI | MR | Zbl

[3] Agostini A., Lizzi F., Zampini A., “Generalized {W}eyl systems and {$\kappa$}-{M}inkowski space”, Modern Phys. Lett. A, 17 (2002), 2105–2126, arXiv: hep-th/0209174 | DOI | MR | Zbl

[4] Alesci E., Arzano M., “Anomalous dimension in three-dimensional semiclassical gravity”, Phys. Lett. B, 707 (2012), 272–277, arXiv: 1108.1507 | DOI | MR

[5] Amelino-Camelia G., “Relativity in spacetimes with short-distance structure governed by an observer-independent ({P}lanckian) length scale”, Internat. J. Modern Phys. D, 11 (2002), 35–59, arXiv: gr-qc/0012051 | DOI | MR | Zbl

[6] Amelino-Camelia G., “Doubly-special relativity: facts, myths and some key open issues”, Symmetry, 2 (2010), 230–271, arXiv: 1003.3942 | DOI | MR

[7] Amelino-Camelia G., Arzano M., Bianco S., Buonocore R. J., “The {DSR}-deformed relativistic symmetries and the relative locality of 3{D} quantum gravity”, Classical Quantum Gravity, 30 (2013), 065012, 17 pp., arXiv: 1210.7834 | DOI | MR | Zbl

[8] Arzano M., “Anatomy of a deformed symmetry: field quantization on curved momentum space”, Phys. Rev. D, 83 (2011), 025025, 12 pp., arXiv: 1009.1097 | DOI

[9] Arzano M., Kowalski-Glikman J., Trześniewski T., “Beyond {F}ock space in three-dimensional semiclassical gravity”, Classical Quantum Gravity, 31 (2014), 035013, 13 pp., arXiv: 1305.6220 | DOI | MR | Zbl

[10] Baez J. C., Wise D. K., Crans A. S., “Exotic statistics for strings in 4{D} BF theory”, Adv. Theor. Math. Phys., 11 (2007), 707–749, arXiv: gr-qc/0603085 | DOI | MR | Zbl

[11] Bais F. A., Muller N. M., “Topological field theory and the quantum double of {${\rm SU}(2)$}”, Nuclear Phys. B, 530 (1998), 349–400, arXiv: hep-th/9804130 | DOI | MR | Zbl

[12] Bais F. A., Muller N. M., Schroers B. J., “Quantum group symmetry and particle scattering in {$(2+1)$}-dimensional quantum gravity”, Nuclear Phys. B, 640 (2002), 3–45, arXiv: hep-th/0205021 | DOI | MR | Zbl

[13] Baratin A., Dittrich B., Oriti D., Tambornino J., “Non-commutative flux representation for loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 175011, 19 pp., arXiv: 1004.3450 | DOI | MR | Zbl

[14] Baratin A., Oriti D., “Group field theory with noncommutative metric variables”, Phys. Rev. Lett., 105 (2010), 221302, 4 pp., arXiv: 1002.4723 | DOI | MR

[15] Deser S., Jackiw R., 't Hooft G., “Three-dimensional {E}instein gravity: dynamics of flat space”, Ann. Physics, 152 (1984), 220–235 | DOI | MR

[16] Freidel L., Livine E. R., “3{D} quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp., arXiv: hep-th/0512113 | DOI | MR | Zbl

[17] Freidel L., Majid S., “Noncommutative harmonic analysis, sampling theory and the {D}uflo map in {$2+1$} quantum gravity”, Classical Quantum Gravity, 25 (2008), 045006, 37 pp., arXiv: hep-th/0601004 | DOI | MR | Zbl

[18] Fuchs J., Schweigert C., Symmetries, {L}ie algebras and representations. A graduate course for physicists, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[19] Guedes C., Oriti D., Raasakka M., “Quantization maps, algebra representation, and non-commutative {F}ourier transform for {L}ie groups”, J. Math. Phys., 54 (2013), 083508, 31 pp., arXiv: 1301.7750 | DOI | MR | Zbl

[20] Joung E., Mourad J., Noui K., “Three dimensional quantum geometry and deformed symmetry”, J. Math. Phys., 50 (2009), 052503, 29 pp., arXiv: 0806.4121 | DOI | MR | Zbl

[21] Koornwinder T. H., Muller N. M., “The quantum double of a (locally) compact group”, J. Lie Theory, 7 (1997), 101–120, arXiv: q-alg/9605044 | MR | Zbl

[22] Majid S., Schroers B. J., “{$q$}-deformation and semidualization in 3{D} quantum gravity”, J. Phys. A: Math. Theor., 42 (2009), 425402, 40 pp., arXiv: 0806.2587 | DOI | MR | Zbl

[23] Matschull H.-J., Welling M., “Quantum mechanics of a point particle in {$(2+1)$}-dimensional gravity”, Classical Quantum Gravity, 15 (1998), 2981–3030, arXiv: gr-qc/9708054 | DOI | MR | Zbl

[24] Meljanac S., Samsarov A., Stojić M., Gupta K. S., “{$\kappa$}-{M}inkowski spacetime and the star product realizations”, Eur. Phys. J. C, 53 (2008), 295–309, arXiv: 0705.2471 | DOI | MR | Zbl

[25] Meljanac S., Škoda Z., Svrtan D., “Exponential formulas and {L}ie algebra type star products”, SIGMA, 8 (2012), 013, 15 pp., arXiv: 1006.0478 | DOI | MR | Zbl

[26] Noui K., “Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory”, Classical Quantum Gravity, 24 (2007), 329–360, arXiv: gr-qc/0612145 | DOI | MR | Zbl

[27] Sasai Y., Sasakura N., “The {C}utkosky rule of three dimensional noncommutative field theory in {L}ie algebraic noncommutative spacetime”, J. High Energy Phys., 2009:6 (2009), 013, 22 pp., arXiv: 0902.3050 | DOI | MR

[28] Sasai Y., Sasakura N., Massive particles coupled with $2+1$ dimensional gravity and noncommutative field theory, arXiv: 0902.3502

[29] Schroers B. J. paper Lessons from $(2+1)$-dimensional quantum gravity, PoS Proc. Sci., 2007, PoS(QG–PH), 035, 15 pp., arXiv: 0710.5844 | MR

[30] Schroers B. J., Wilhelm M., “Towards non-commutative deformations of relativistic wave equations in $2+1$ dimensions”, SIGMA, 10 (2014), 053, 23 pp., arXiv: 1402.7039 | DOI | MR

[31] Staruszkiewicz A., “Gravitation theory in three-dimensional space”, Acta Phys. Polon., 24 (1963), 735–740 | MR

[32] 't Hooft G., “Quantization of point particles in {$(2+1)$}-dimensional gravity and spacetime discreteness”, Classical Quantum Gravity, 13 (1996), 1023–1039, arXiv: gr-qc/9601014 | DOI | MR | Zbl

[33] Welling M., “Two-particle quantum mechanics in {$2+1$} gravity using non-commuting coordinates”, Classical Quantum Gravity, 14 (1997), 3313–3326, arXiv: gr-qc/9703058 | DOI | MR | Zbl