@article{SIGMA_2014_10_a78,
author = {Michele Arzano and Danilo Latini and Matteo Lotito},
title = {Group {Momentum} {Space} and {Hopf} {Algebra} {Symmetries} of {Point} {Particles} {Coupled} to $2+1$ {Gravity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a78/}
}
TY - JOUR AU - Michele Arzano AU - Danilo Latini AU - Matteo Lotito TI - Group Momentum Space and Hopf Algebra Symmetries of Point Particles Coupled to $2+1$ Gravity JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a78/ LA - en ID - SIGMA_2014_10_a78 ER -
%0 Journal Article %A Michele Arzano %A Danilo Latini %A Matteo Lotito %T Group Momentum Space and Hopf Algebra Symmetries of Point Particles Coupled to $2+1$ Gravity %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a78/ %G en %F SIGMA_2014_10_a78
Michele Arzano; Danilo Latini; Matteo Lotito. Group Momentum Space and Hopf Algebra Symmetries of Point Particles Coupled to $2+1$ Gravity. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a78/
[1] Agostini A., Amelino-Camelia G., Arzano M., D'Andrea F., “A cyclic integral on $\kappa$-Minkowski noncommutative space-time”, Internat. J. Modern Phys. A, 21 (2006), 3133–3150 | DOI | MR | Zbl
[2] Agostini A., Amelino-Camelia G., D'Andrea F., “Hopf-algebra description of noncommutative-space-time symmetries”, Internat. J. Modern Phys. A, 19 (2004), 5187–5219, arXiv: hep-th/0306013 | DOI | MR | Zbl
[3] Agostini A., Lizzi F., Zampini A., “Generalized {W}eyl systems and {$\kappa$}-{M}inkowski space”, Modern Phys. Lett. A, 17 (2002), 2105–2126, arXiv: hep-th/0209174 | DOI | MR | Zbl
[4] Alesci E., Arzano M., “Anomalous dimension in three-dimensional semiclassical gravity”, Phys. Lett. B, 707 (2012), 272–277, arXiv: 1108.1507 | DOI | MR
[5] Amelino-Camelia G., “Relativity in spacetimes with short-distance structure governed by an observer-independent ({P}lanckian) length scale”, Internat. J. Modern Phys. D, 11 (2002), 35–59, arXiv: gr-qc/0012051 | DOI | MR | Zbl
[6] Amelino-Camelia G., “Doubly-special relativity: facts, myths and some key open issues”, Symmetry, 2 (2010), 230–271, arXiv: 1003.3942 | DOI | MR
[7] Amelino-Camelia G., Arzano M., Bianco S., Buonocore R. J., “The {DSR}-deformed relativistic symmetries and the relative locality of 3{D} quantum gravity”, Classical Quantum Gravity, 30 (2013), 065012, 17 pp., arXiv: 1210.7834 | DOI | MR | Zbl
[8] Arzano M., “Anatomy of a deformed symmetry: field quantization on curved momentum space”, Phys. Rev. D, 83 (2011), 025025, 12 pp., arXiv: 1009.1097 | DOI
[9] Arzano M., Kowalski-Glikman J., Trześniewski T., “Beyond {F}ock space in three-dimensional semiclassical gravity”, Classical Quantum Gravity, 31 (2014), 035013, 13 pp., arXiv: 1305.6220 | DOI | MR | Zbl
[10] Baez J. C., Wise D. K., Crans A. S., “Exotic statistics for strings in 4{D} BF theory”, Adv. Theor. Math. Phys., 11 (2007), 707–749, arXiv: gr-qc/0603085 | DOI | MR | Zbl
[11] Bais F. A., Muller N. M., “Topological field theory and the quantum double of {${\rm SU}(2)$}”, Nuclear Phys. B, 530 (1998), 349–400, arXiv: hep-th/9804130 | DOI | MR | Zbl
[12] Bais F. A., Muller N. M., Schroers B. J., “Quantum group symmetry and particle scattering in {$(2+1)$}-dimensional quantum gravity”, Nuclear Phys. B, 640 (2002), 3–45, arXiv: hep-th/0205021 | DOI | MR | Zbl
[13] Baratin A., Dittrich B., Oriti D., Tambornino J., “Non-commutative flux representation for loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 175011, 19 pp., arXiv: 1004.3450 | DOI | MR | Zbl
[14] Baratin A., Oriti D., “Group field theory with noncommutative metric variables”, Phys. Rev. Lett., 105 (2010), 221302, 4 pp., arXiv: 1002.4723 | DOI | MR
[15] Deser S., Jackiw R., 't Hooft G., “Three-dimensional {E}instein gravity: dynamics of flat space”, Ann. Physics, 152 (1984), 220–235 | DOI | MR
[16] Freidel L., Livine E. R., “3{D} quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp., arXiv: hep-th/0512113 | DOI | MR | Zbl
[17] Freidel L., Majid S., “Noncommutative harmonic analysis, sampling theory and the {D}uflo map in {$2+1$} quantum gravity”, Classical Quantum Gravity, 25 (2008), 045006, 37 pp., arXiv: hep-th/0601004 | DOI | MR | Zbl
[18] Fuchs J., Schweigert C., Symmetries, {L}ie algebras and representations. A graduate course for physicists, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[19] Guedes C., Oriti D., Raasakka M., “Quantization maps, algebra representation, and non-commutative {F}ourier transform for {L}ie groups”, J. Math. Phys., 54 (2013), 083508, 31 pp., arXiv: 1301.7750 | DOI | MR | Zbl
[20] Joung E., Mourad J., Noui K., “Three dimensional quantum geometry and deformed symmetry”, J. Math. Phys., 50 (2009), 052503, 29 pp., arXiv: 0806.4121 | DOI | MR | Zbl
[21] Koornwinder T. H., Muller N. M., “The quantum double of a (locally) compact group”, J. Lie Theory, 7 (1997), 101–120, arXiv: q-alg/9605044 | MR | Zbl
[22] Majid S., Schroers B. J., “{$q$}-deformation and semidualization in 3{D} quantum gravity”, J. Phys. A: Math. Theor., 42 (2009), 425402, 40 pp., arXiv: 0806.2587 | DOI | MR | Zbl
[23] Matschull H.-J., Welling M., “Quantum mechanics of a point particle in {$(2+1)$}-dimensional gravity”, Classical Quantum Gravity, 15 (1998), 2981–3030, arXiv: gr-qc/9708054 | DOI | MR | Zbl
[24] Meljanac S., Samsarov A., Stojić M., Gupta K. S., “{$\kappa$}-{M}inkowski spacetime and the star product realizations”, Eur. Phys. J. C, 53 (2008), 295–309, arXiv: 0705.2471 | DOI | MR | Zbl
[25] Meljanac S., Škoda Z., Svrtan D., “Exponential formulas and {L}ie algebra type star products”, SIGMA, 8 (2012), 013, 15 pp., arXiv: 1006.0478 | DOI | MR | Zbl
[26] Noui K., “Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory”, Classical Quantum Gravity, 24 (2007), 329–360, arXiv: gr-qc/0612145 | DOI | MR | Zbl
[27] Sasai Y., Sasakura N., “The {C}utkosky rule of three dimensional noncommutative field theory in {L}ie algebraic noncommutative spacetime”, J. High Energy Phys., 2009:6 (2009), 013, 22 pp., arXiv: 0902.3050 | DOI | MR
[28] Sasai Y., Sasakura N., Massive particles coupled with $2+1$ dimensional gravity and noncommutative field theory, arXiv: 0902.3502
[29] Schroers B. J. paper Lessons from $(2+1)$-dimensional quantum gravity, PoS Proc. Sci., 2007, PoS(QG–PH), 035, 15 pp., arXiv: 0710.5844 | MR
[30] Schroers B. J., Wilhelm M., “Towards non-commutative deformations of relativistic wave equations in $2+1$ dimensions”, SIGMA, 10 (2014), 053, 23 pp., arXiv: 1402.7039 | DOI | MR
[31] Staruszkiewicz A., “Gravitation theory in three-dimensional space”, Acta Phys. Polon., 24 (1963), 735–740 | MR
[32] 't Hooft G., “Quantization of point particles in {$(2+1)$}-dimensional gravity and spacetime discreteness”, Classical Quantum Gravity, 13 (1996), 1023–1039, arXiv: gr-qc/9601014 | DOI | MR | Zbl
[33] Welling M., “Two-particle quantum mechanics in {$2+1$} gravity using non-commuting coordinates”, Classical Quantum Gravity, 14 (1997), 3313–3326, arXiv: gr-qc/9703058 | DOI | MR | Zbl