Some Noncommutative Matrix Algebras Arising in the Bispectral Problem
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

I revisit the so called “bispectral problem” introduced in a joint paper with Hans Duistermaat a long time ago, allowing now for the differential operators to have matrix coefficients and for the eigenfunctions, and one of the eigenvalues, to be matrix valued too. In the last example we go beyond this and allow both eigenvalues to be matrix valued.
Keywords: noncommutative algebras; bispectral problem.
@article{SIGMA_2014_10_a77,
     author = {F. Alberto Gr\"unbaum},
     title = {Some {Noncommutative} {Matrix} {Algebras} {Arising} in the {Bispectral} {Problem}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a77/}
}
TY  - JOUR
AU  - F. Alberto Grünbaum
TI  - Some Noncommutative Matrix Algebras Arising in the Bispectral Problem
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a77/
LA  - en
ID  - SIGMA_2014_10_a77
ER  - 
%0 Journal Article
%A F. Alberto Grünbaum
%T Some Noncommutative Matrix Algebras Arising in the Bispectral Problem
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a77/
%G en
%F SIGMA_2014_10_a77
F. Alberto Grünbaum. Some Noncommutative Matrix Algebras Arising in the Bispectral Problem. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a77/

[1] Bergvelt M., Gekhtman M., Kasman A., “Spin {C}alogero particles and bispectral solutions of the matrix {KP} hierarchy”, Math. Phys. Anal. Geom., 12 (2009), 181–200, arXiv: 0806.2613 | DOI | MR | Zbl

[2] Boyallian C., Liberati J. I., “Matrix-valued bispectral operators and quasideterminants”, J. Phys. A: Math. Theor., 41 (2008), 365209, 11 pp. | DOI | MR | Zbl

[3] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators”, Proc. London Math. Soc., 21 (1923), 420–440 | DOI | MR | Zbl

[4] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators”, Proc. R. Soc. Lond. Ser. A, 118 (1928), 557–583 | DOI | Zbl

[5] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators. II: The identity $P^n = Q^m$”, Proc. R. Soc. Lond. Ser. A, 134 (1931), 471–485 | DOI

[6] Castro M. M., Grünbaum F. A., “The algebra of differential operators associated to a family of matrix-valued orthogonal polynomials: five instructive examples”, Int. Math. Res. Not., 2006 (2006), 47602, 33 pp. | DOI | MR | Zbl

[7] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Comm. Math. Phys., 103 (1986), 177–240 | DOI | MR | Zbl

[8] Durán A. J., Grünbaum F. A., “Orthogonal matrix polynomials satisfying second-order differential equations”, Int. Math. Res. Not., 2004:10 (2004), 461–484 | DOI | MR | Zbl

[9] Gohberg I., Kaashoek M. A., Sakhnovich A. L., “Canonical systems with rational spectral densities: explicit formulas and applications”, Math. Nachr., 194 (1998), 93–125 | DOI | MR | Zbl

[10] Goncharenko V. M., Veselov A. P., “Monodromy of the matrix {S}chrödinger equations and {D}arboux transformations”, J. Phys. A: Math. Gen., 31 (1998), 5315–5326 | DOI | MR | Zbl

[11] Grünbaum F. A., “A new property of reproducing kernels for classical orthogonal polynomials”, J. Math. Anal. Appl., 95 (1983), 491–500 | DOI | MR

[12] Grünbaum F. A., “Some new explorations into the mystery of time and band limiting”, Adv. in Appl. Math., 13 (1992), 328–349 | DOI | MR

[13] Grünbaum F. A., “Time-band limiting and the bispectral problem”, Comm. Pure Appl. Math., 47 (1994), 307–328 | DOI | MR

[14] Grünbaum F. A., “Band-time-band limiting integral operators and commuting differential operators”, St. Petersburg Math. J., 8 (1997), 93–96 | MR

[15] Grünbaum F. A., “Some bispectral musings”, The Bispectral Problem ({M}ontreal, {PQ}, 1997), CRM Proc. Lecture Notes, 14, Amer. Math. Soc., Providence, RI, 1998, 31–45 | MR

[16] Grünbaum F. A., Haine L., “Some functions that generalize the {A}skey–{W}ilson polynomials”, Comm. Math. Phys., 184 (1997), 173–202 | DOI | MR

[17] Grünbaum F. A., Iliev P., “A noncommutative version of the bispectral problem”, J. Comput. Appl. Math., 161 (2003), 99–118 | DOI | MR

[18] Grünbaum F. A., Jones V. F. R., Zubelli J., On the bimodule structure of the bispectral problem, in preparation

[19] Grünbaum F. A., Longhi L., Perlstadt M., “Differential operators commuting with finite convolution integral operators: some nonabelian examples”, SIAM J. Appl. Math., 42 (1982), 941–955 | DOI | MR

[20] Grünbaum F. A., Pacharoni I., Tirao J., “Matrix valued spherical functions associated to the complex projective plane”, J. Funct. Anal., 188 (2002), 350–441, arXiv: math.RT/0108042 | DOI | MR

[21] Grünbaum F. A., Pacharoni I., Tirao J., “Matrix valued orthogonal polynomials of the {J}acobi type”, Indag. Math. (N.S.), 14 (2003), 353–366 | DOI | MR

[22] Grünbaum F. A., Pacharoni I., Zurrian I., Time and band limiting in a noncommutative context, in preparation

[23] Grünbaum F. A., Tirao J., “The algebra of differential operators associated to a weight matrix”, Integral Equations Operator Theory, 58 (2007), 449–475 | DOI | MR

[24] Harnad J., Kasman A. (eds.), The bispectral problem, CRM Proceedings Lecture Notes, 14, Amer. Math. Soc., Providence, RI, 1998 | MR

[25] Krein M., “Infinite {$J$}-matrices and a matrix-moment problem”, Doklady Akad. Nauk SSSR, 69 (1949), 125–128 | MR

[26] Krein M. G., “Fundamental aspects of the representation theory of Hermitian operators with deficiency index $(m,m)$”, Amer. Math. Soc. Translations Ser. II, 97, Amer. Math. Soc., Providence, RI, 1971, 75–143

[27] Krichever I. M., “Algebraic curves and nonlinear difference equations”, Russ. Math. Surv., 33:4 (1978), 255–256 | DOI | MR | Zbl

[28] Mumford D., “An algebro-geometric construction of commuting operators and of solutions to the {T}oda lattice equation, {K}orteweg–de {V}ries equation and related nonlinear equation”, Proceedings of the {I}nternational {S}ymposium on {A}lgebraic {G}eometry ({K}yoto {U}niv., {K}yoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 115–153 | MR

[29] Perlstadt M., “Chopped orthogonal polynomial expansions — some discrete cases”, SIAM J. Algebraic Discrete Methods, 4 (1983), 94–100 | DOI | MR | Zbl

[30] Perlstadt M., “A property of orthogonal polynomial families with polynomial duals”, SIAM J. Math. Anal., 15 (1984), 1043–1054 | DOI | MR | Zbl

[31] Sakhnovich A., Zubelli J. P., “Bundle bispectrality for matrix differential equations”, Integral Equations Operator Theory, 41 (2001), 472–496 | DOI | MR | Zbl

[32] Schur I., “Über vertauschbare lineare Differentialausdrücke”, Sitzungsber. Berl. Math. Ges., 4 (1905), 2–8 | Zbl

[33] Simons F. J., Dahlen F. A., “Spherical Slepian functions on the polar gap in geodesy”, Geophys. J. Int., 166 (2006), 1039–1061, arXiv: math.ST/0603271 | DOI

[34] Simons F. J., Dahlen F. A., Wieczorek M. A., “Spatiospectral concentration on a sphere”, SIAM Rev., 48 (2006), 504–536, arXiv: math.CA/0408424 | DOI | MR | Zbl

[35] Slepian D., “On bandwidth”, Proc. IEEE, 64 (1976), 292–300 | DOI | MR

[36] Slepian D., “Some comments on {F}ourier analysis, uncertainty and modeling”, SIAM Rev., 25 (1983), 379–393 | DOI | MR | Zbl

[37] Tirao J., “The algebra of differential operators associated to a weight matrix: a first example”, Groups, Algebras and Applications, Contemp. Math., 537, Amer. Math. Soc., Providence, RI, 2011, 291–324 | DOI | MR | Zbl

[38] Wilson G., “Algebraic curves and soliton equations”, Geometry Today ({R}ome, 1984), Progr. Math., 60, Birkhäuser Boston, Boston, MA, 1985, 303–329 | MR

[39] Wilson G., “Bispectral commutative ordinary differential operators”, J. Reine Angew. Math., 442 (1993), 177–204 | DOI | MR | Zbl

[40] Wilson G., “Collisions of {C}alogero–{M}oser particles and an adelic {G}rassmannian”, Invent. Math., 133 (1998), 1–41 | DOI | MR | Zbl

[41] Wilson G., “The complex {C}alogero–{M}oser and {KP} systems”, Calogero–{M}oser–{S}utherland Models ({M}ontréal, {QC}, 1997), CRM Ser. Math. Phys., Springer, New York, 2000, 539–548 | MR

[42] Zubelli J. P., “Differential equations in the spectral parameter for matrix differential operators”, Phys. D, 43 (1990), 269–287 | DOI | MR | Zbl

[43] Zubelli J. P., Magri F., “Differential equations in the spectral parameter, {D}arboux transformations and a hierarchy of master symmetries for {K}d{V}”, Comm. Math. Phys., 141 (1991), 329–351 | DOI | MR | Zbl