@article{SIGMA_2014_10_a76,
author = {Terry A. Loring},
title = {Quantitative $K${-Theory} {Related} to {Spin} {Chern} {Numbers}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a76/}
}
Terry A. Loring. Quantitative $K$-Theory Related to Spin Chern Numbers. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a76/
[1] Eilers S., Exel R., “Finite-dimensional representations of the soft torus”, Proc. Amer. Math. Soc., 130 (2002), 727–731, arXiv: math.OA/9810165 | DOI | MR | Zbl
[2] Eilers S., Loring T. A., “Computing contingencies for stable relations”, Internat. J. Math., 10 (1999), 301–326 | DOI | MR | Zbl
[3] Eilers S., Loring T. A., Pedersen G. K., “Morphisms of extensions of {$C^*$}-algebras: pushing forward the {B}usby invariant”, Adv. Math., 147 (1999), 74–109 | DOI | MR | Zbl
[4] Exel R., “The soft torus and applications to almost commuting matrices”, Pacific J. Math., 160 (1993), 207–217 http://projecteuclid.org/euclid.pjm/1102624214 | DOI | MR | Zbl
[5] Exel R., Loring T. A., “Almost commuting unitary matrices”, Proc. Amer. Math. Soc., 106 (1989), 913–915 | DOI | MR | Zbl
[6] Exel R., Loring T. A., “Invariants of almost commuting unitaries”, J. Funct. Anal., 95 (1991), 364–376 | DOI | MR | Zbl
[7] Fulga I. C., Hassler F., Akhmerov A. R., “Scattering theory of topological insulators and superconductors”, Phys. Rev. B, 85 (2012), 165409, 12 pp., arXiv: 1106.6351 | DOI
[8] Glebsky L., Almost commuting matrices with respect to normalized Hilbert–Schmidt norm, arXiv: 1002.3082
[9] Gygi F., Fattebert J., Schwegler E., “Computation of maximally localized Wannier functions using a simultaneous diagonalization algorithm”, Comput. Phys. Comm., 155 (2003), 1–6 | DOI
[10] Halmos P. R., “Some unsolved problems of unknown depth about operators on {H}ilbert space”, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1976), 67–76 | DOI | MR | Zbl
[11] Hastings M. B., Loring T. A., “Topological insulators and {$C^*$}-algebras: theory and numerical practice”, Ann. Physics, 326 (2011), 1699–1759, arXiv: 1012.1019 | DOI | MR | Zbl
[12] Lin H., “Almost commuting selfadjoint matrices and applications”, Operator Algebras and their Applications (Waterloo, {ON}, 1994/1995), Fields Inst. Commun., 13, Amer. Math. Soc., Providence, RI, 1997, 193–233 | MR | Zbl
[13] Loring T. A., The torus and noncommutative topology, Ph. D. Thesis, University of California, Berkeley, 1986
[14] Loring T. A., “{$C^*$}-algebra relations”, Math. Scand., 107 (2010), 43–72, arXiv: 0807.4988 | MR | Zbl
[15] Loring T. A., “Computing a logarithm of a unitary matrix with general spectrum”, Numer. Linear Algebra Appl. (to appear) , arXiv: 1203.6151 | DOI
[16] Loring T. A., Hastings M. B., “Disordered topological insulators via {$C^*$}-algebras”, Europhys. Lett., 92 (2010), 67004, 6 pp., arXiv: 1005.4883 | DOI | MR
[17] Loring T. A., Sørensen A. P. W., “Almost commuting unitary matrices related to time reversal”, Comm. Math. Phys., 323 (2013), 859–887, arXiv: 1107.4187 | DOI | MR | Zbl
[18] Loring T. A., Vides F., Estimating norms of commutators, arXiv: 1301.4252
[19] Marzari N., Souza I., Vanderbilt D., “An introduction to maximally-localized Wannier functions”, Psi-K Newsletter, 57 (2003), 129–168 http://www.psi-k.org/newsletters/News_57/Highlight_57.pdf
[20] Rieffel M. A., “{$C^{\ast} $}-algebras associated with irrational rotations”, Pacific J. Math., 93 (1981), 415–429 | DOI | MR | Zbl
[21] Ruhe A., Closest normal matrix finally found!, BIT, 27 (1987), 585–598 | DOI | MR | Zbl
[22] Sørensen A. P. W., Semiprojectivity and the geometry of graphs, Ph.D. Thesis, University of Copenhagen, 2012 http://www.math.ku.dk/noter/filer/phd12apws.pdf