Quantitative $K$-Theory Related to Spin Chern Numbers
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We examine the various indices defined on pairs of almost commuting unitary matrices that can detect pairs that are far from commuting pairs. We do this in two symmetry classes, that of general unitary matrices and that of self-dual matrices, with an emphasis on quantitative results. We determine which values of the norm of the commutator guarantee that the indices are defined, where they are equal, and what quantitative results on the distance to a pair with a different index are possible. We validate a method of computing spin Chern numbers that was developed with Hastings and only conjectured to be correct. Specifically, the Pfaffian–Bott index can be computed by the “log method” for commutator norms up to a specific constant.
Keywords: $K$-theory; $C^{*}$-algebras; matrices.
@article{SIGMA_2014_10_a76,
     author = {Terry A. Loring},
     title = {Quantitative $K${-Theory} {Related} to {Spin} {Chern} {Numbers}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a76/}
}
TY  - JOUR
AU  - Terry A. Loring
TI  - Quantitative $K$-Theory Related to Spin Chern Numbers
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a76/
LA  - en
ID  - SIGMA_2014_10_a76
ER  - 
%0 Journal Article
%A Terry A. Loring
%T Quantitative $K$-Theory Related to Spin Chern Numbers
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a76/
%G en
%F SIGMA_2014_10_a76
Terry A. Loring. Quantitative $K$-Theory Related to Spin Chern Numbers. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a76/

[1] Eilers S., Exel R., “Finite-dimensional representations of the soft torus”, Proc. Amer. Math. Soc., 130 (2002), 727–731, arXiv: math.OA/9810165 | DOI | MR | Zbl

[2] Eilers S., Loring T. A., “Computing contingencies for stable relations”, Internat. J. Math., 10 (1999), 301–326 | DOI | MR | Zbl

[3] Eilers S., Loring T. A., Pedersen G. K., “Morphisms of extensions of {$C^*$}-algebras: pushing forward the {B}usby invariant”, Adv. Math., 147 (1999), 74–109 | DOI | MR | Zbl

[4] Exel R., “The soft torus and applications to almost commuting matrices”, Pacific J. Math., 160 (1993), 207–217 http://projecteuclid.org/euclid.pjm/1102624214 | DOI | MR | Zbl

[5] Exel R., Loring T. A., “Almost commuting unitary matrices”, Proc. Amer. Math. Soc., 106 (1989), 913–915 | DOI | MR | Zbl

[6] Exel R., Loring T. A., “Invariants of almost commuting unitaries”, J. Funct. Anal., 95 (1991), 364–376 | DOI | MR | Zbl

[7] Fulga I. C., Hassler F., Akhmerov A. R., “Scattering theory of topological insulators and superconductors”, Phys. Rev. B, 85 (2012), 165409, 12 pp., arXiv: 1106.6351 | DOI

[8] Glebsky L., Almost commuting matrices with respect to normalized Hilbert–Schmidt norm, arXiv: 1002.3082

[9] Gygi F., Fattebert J., Schwegler E., “Computation of maximally localized Wannier functions using a simultaneous diagonalization algorithm”, Comput. Phys. Comm., 155 (2003), 1–6 | DOI

[10] Halmos P. R., “Some unsolved problems of unknown depth about operators on {H}ilbert space”, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1976), 67–76 | DOI | MR | Zbl

[11] Hastings M. B., Loring T. A., “Topological insulators and {$C^*$}-algebras: theory and numerical practice”, Ann. Physics, 326 (2011), 1699–1759, arXiv: 1012.1019 | DOI | MR | Zbl

[12] Lin H., “Almost commuting selfadjoint matrices and applications”, Operator Algebras and their Applications (Waterloo, {ON}, 1994/1995), Fields Inst. Commun., 13, Amer. Math. Soc., Providence, RI, 1997, 193–233 | MR | Zbl

[13] Loring T. A., The torus and noncommutative topology, Ph. D. Thesis, University of California, Berkeley, 1986

[14] Loring T. A., “{$C^*$}-algebra relations”, Math. Scand., 107 (2010), 43–72, arXiv: 0807.4988 | MR | Zbl

[15] Loring T. A., “Computing a logarithm of a unitary matrix with general spectrum”, Numer. Linear Algebra Appl. (to appear) , arXiv: 1203.6151 | DOI

[16] Loring T. A., Hastings M. B., “Disordered topological insulators via {$C^*$}-algebras”, Europhys. Lett., 92 (2010), 67004, 6 pp., arXiv: 1005.4883 | DOI | MR

[17] Loring T. A., Sørensen A. P. W., “Almost commuting unitary matrices related to time reversal”, Comm. Math. Phys., 323 (2013), 859–887, arXiv: 1107.4187 | DOI | MR | Zbl

[18] Loring T. A., Vides F., Estimating norms of commutators, arXiv: 1301.4252

[19] Marzari N., Souza I., Vanderbilt D., “An introduction to maximally-localized Wannier functions”, Psi-K Newsletter, 57 (2003), 129–168 http://www.psi-k.org/newsletters/News_57/Highlight_57.pdf

[20] Rieffel M. A., “{$C^{\ast} $}-algebras associated with irrational rotations”, Pacific J. Math., 93 (1981), 415–429 | DOI | MR | Zbl

[21] Ruhe A., Closest normal matrix finally found!, BIT, 27 (1987), 585–598 | DOI | MR | Zbl

[22] Sørensen A. P. W., Semiprojectivity and the geometry of graphs, Ph.D. Thesis, University of Copenhagen, 2012 http://www.math.ku.dk/noter/filer/phd12apws.pdf