@article{SIGMA_2014_10_a74,
author = {Yan-Gang Miao and Hui Wang},
title = {Energy {Spectrum} and {Phase} {Transition} of {Superfluid} {Fermi} {Gas} of {Atoms} on {Noncommutative} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a74/}
}
TY - JOUR AU - Yan-Gang Miao AU - Hui Wang TI - Energy Spectrum and Phase Transition of Superfluid Fermi Gas of Atoms on Noncommutative Space JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a74/ LA - en ID - SIGMA_2014_10_a74 ER -
%0 Journal Article %A Yan-Gang Miao %A Hui Wang %T Energy Spectrum and Phase Transition of Superfluid Fermi Gas of Atoms on Noncommutative Space %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a74/ %G en %F SIGMA_2014_10_a74
Yan-Gang Miao; Hui Wang. Energy Spectrum and Phase Transition of Superfluid Fermi Gas of Atoms on Noncommutative Space. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a74/
[1] Amelino-Camelia G., “Testable scenario for relativity with minimum length”, Phys. Lett. B, 510 (2001), 255–263, arXiv: hep-th/0012238 | DOI | MR | Zbl
[2] Amelino-Camelia G., “Relativity in spacetimes with short-distance structure governed by an observer-independent ({P}lanckian) length scale”, Internat. J. Modern Phys. D, 11 (2002), 35–59, arXiv: hep-th/0012238 | DOI | MR | Zbl
[3] Balachandran A. P., Govindarajan T. R., Mangano G., Pinzul A., Qureshi B. A., Vaidya S., “Statistics and UV-IR mixing with twisted Poincaré invariance”, Phys. Rev. D, 75 (2007), 045009, 7 pp., arXiv: hep-th/0608179 | DOI
[4] Balachandran A. P., Mangano G., Pinzul A., Vaidya S., “Spin and statistics on the {G}roenewold–{M}oyal plane: {P}auli-forbidden levels and transitions”, Internat. J. Modern Phys. A, 21 (2006), 3111–3126, arXiv: hep-th/0508002 | DOI | MR | Zbl
[5] Bardeen J., Cooper L. N., Schrieffer J. R., “Theory of superconductivity”, Phys. Rev., 108 (1957), 1175–1204 | DOI | MR | Zbl
[6] Basu P., Chakraborty B., Scholtz F. G., “A unifying perspective on the {M}oyal and {V}oros products and their physical meanings”, J. Phys. A: Math. Theor., 44 (2011), 285204, 11 pp., arXiv: 1101.2495 | DOI | MR | Zbl
[7] Basu P., Chakraborty B., Vaidya S., “Fate of the superconducting ground state on the {M}oyal plane”, Phys. Lett. B, 690 (2010), 431–435, arXiv: 0911.4581 | DOI | MR
[8] Basu P., Srivastava R., Vaidya S., “Thermal correlation functions of twisted quantum fields”, Phys. Rev. D, 82 (2010), 025005, 4 pp., arXiv: 1003.4069 | DOI
[9] Berry M. V., “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. London Ser. A, 392 (1984), 45–57 | DOI | MR | Zbl
[10] Bogoliubov N. N., “On a new method in the theory of superconductivity”, Nuovo Cimento, 7 (1958), 794–805 | DOI | MR
[11] Bogoliubov N. N., Tolmachev V. V., Shirkov D. V., A new method in the theory of superconductivity, Consultants Bureau, Inc., New York, 1959 | MR
[12] Bu J.-G., Kim H.-C., Lee Y., Vac C. H., Yee J. H., “Noncommutative field theory from twisted {F}ock space”, Phys. Rev. D, 73 (2006), 125001, 10 pp., arXiv: hep-th/0603251 | DOI | MR
[13] Bu J.-G., Kim H.-C., Lee Y., Vac C. H., Yee J. H., “{$\kappa$}-deformed spacetime from twist”, Phys. Lett. B, 665 (2008), 95–99, arXiv: hep-th/0611175 | DOI | MR
[14] Chaichian M., Kulish P. P., Nishijima K., Tureanu A., “On a {L}orentz-invariant interpretation of noncommutative space-time and its implications on noncommutative {QFT}”, Phys. Lett. B, 604 (2004), 98–102, arXiv: hep-th/0408069 | DOI | MR | Zbl
[15] Chakraborty B., Gangopadhyay S., Hazra A. G., Scholtz F. G., “Twisted {G}alilean symmetry and the {P}auli principle at low energies”, J. Phys. A: Math. Gen., 39 (2006), 9557–9572, arXiv: hep-th/0601121 | DOI | MR | Zbl
[16] Chaoba Devi Y., Ghosh K. J. B., Chakraborty B., Scholtz F. G., “Thermal effective potential in two- and three-dimensional non-commutative spaces”, J. Phys. A: Math. Theor., 47 (2014), 025302, 32 pp., arXiv: 1306.4482 | DOI | MR | Zbl
[17] Chin C., Grimm R., Julienne P., Tiesinga E., “Feshbach resonances in ultracold gases”, Rev. Modern Phys., 82 (2010), 1225–1286, arXiv: 0812.1496 | DOI
[18] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[19] Connes A., Douglas M. R., Schwarz A., “Noncommutative geometry and matrix theory: compactification on tori”, J. High Energy Phys., 1998:2 (1998), 003, 35 pp., arXiv: hep-th/9711162 | DOI | MR
[20] Cooper L. N., “Bound electron pairs in a degenerate Fermi gas”, Phys. Rev., 104 (1956), 1189–1190 | DOI | Zbl
[21] Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Modern Phys., 73 (2001), 977–1029, arXiv: hep-th/0106048 | DOI | MR | Zbl
[22] Fang Z., Nagaosa N., Takahashi K. S., Asamitsu A., Mathieu R., Ogasawara T., Yamada H., Kawasaki M., Tokura Y., Terakura K., “The anomalous Hall effect and magnetic monopoles in momentum space”, Science, 302 (2003), 92–95, arXiv: cond-mat/0310232 | DOI
[23] Fiore G., “Deforming maps for {L}ie group covariant creation and annihilation operators”, J. Math. Phys., 39 (1998), 3437–3452, arXiv: q-alg/9610005 | DOI | MR | Zbl
[24] Fiore G., “On second quantization on noncommutative spaces with twisted symmetries”, J. Phys. A: Math. Theor., 43 (2010), 155401, 39 pp., arXiv: 0811.0773 | DOI | MR | Zbl
[25] Fiore G., Schupp P., “Identical particles and quantum symmetries”, Nuclear Phys. B, 470 (1996), 211–235, arXiv: hep-th/9508047 | DOI | MR | Zbl
[26] Fiore G., Wess J., “Full twisted {P}oincaré symmetry and quantum field theory on {M}oyal–{W}eyl spaces”, Phys. Rev. D, 75 (2007), 105022, 13 pp., arXiv: hep-th/0701078 | DOI | MR
[27] Greiner M., Regal C. A., Jin D. S., “Emergence of a molecular Bose–Einstein condensate from a Fermi gas”, Nature, 426 (2003), 537–540 | DOI
[28] Khan S., Chakraborty B., Scholtz F. G., “Role of twisted statistics in the noncommutative degenerate electron gas”, Phys. Rev. D, 78 (2008), 025024, 10 pp., arXiv: 0707.4410 | DOI
[29] Lifshitz E. M., Pitaevskiĭ L. P., Course of theoretical physics, v. 9, Statistical physics. Part 2. Theory of the condensed state, Pergamon Press, Oxford–Elmsford, N.Y., 1980 | MR
[30] Loftus T., Regal C. A., Ticknor C., Bohn J. L., Jin D. S., “Resonant control of elastic collisions in an optically trapped Fermi gas of atoms”, Phys. Rev. Lett., 88 (2002), 173201, 4 pp., arXiv: cond-mat/0111571 | DOI
[31] Moyal J. E., “Quantum mechanics as a statistical theory”, Math. Proc. Cambridge Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[32] Regal C. A., Greiner M., Jin D. S., “Observation of resonance condensation of fermionic atom pairs”, Phys. Rev. Lett., 92 (2004), 040403, 4 pp., arXiv: cond-mat/0401554 | DOI
[33] Scholtz F. G., Chakraborty B., “Spectral triplets, statistical mechanics and emergent geometry in non-commutative quantum mechanics”, J. Phys. A: Math. Theor., 46 (2013), 085204, 16 pp., arXiv: 1206.5119 | DOI | MR | Zbl
[34] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR
[35] Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rep., 378 (2003), 207–299, arXiv: hep-th/0106048 | DOI | MR | Zbl
[36] Tureanu A., “Twist and spin-statistics relation in noncommutative quantum field theory”, Phys. Lett. B, 638 (2006), 296–301, arXiv: hep-th/0603219 | DOI | MR | Zbl
[37] Wess J., Deformed coordinate spaces; derivatives, arXiv: hep-th/0408080
[38] Xiao D., Chang M.-C., Niu Q., “Berry phase effects on electronic properties”, Rev. Modern Phys., 82 (2010), 1959–2007, arXiv: 0907.2021 | DOI | MR | Zbl
[39] Xiao D., Shi J., Niu Q., “Berry phase correction to electron density of states in solids”, Phys. Rev. Lett., 95 (2005), 137204, 4 pp., arXiv: cond-mat/0502340 | DOI
[40] Xiao D., Shi J., Niu Q., “Reply to Comment on “Berry phase correction to electron density of states in solids””, Phys. Rev. Lett., 96 (2006), 099702, 1 pp., arXiv: cond-mat/0604215 | DOI
[41] Zwierlein M. W., Stan C. A., Schunck C. H., Raupach S. M. F., Kerman A. J., Ketterle W., “Condensation of pairs of fermionic atoms near a Feshbach resonance”, Phys. Rev. Lett., 92 (2004), 120403, 4 pp., arXiv: cond-mat/0403049 | DOI