@article{SIGMA_2014_10_a73,
author = {Sabina Hossenfelder},
title = {The {Soccer-Ball} {Problem}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a73/}
}
Sabina Hossenfelder. The Soccer-Ball Problem. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a73/
[1] Ali A. F., “Minimal length in quantum gravity, equivalence principle and holographic entropy bound”, Classical Quantum Gravity, 28 (2011), 065013, 10 pp., arXiv: 1101.4181 | DOI | MR | Zbl
[2] Amelino-Camelia G., “Testable scenario for relativity with minimum length”, Phys. Lett. B, 510 (2001), 255–263, arXiv: hep-th/0012238 | DOI | MR | Zbl
[3] Amelino-Camelia G., “Doubly special relativity”, Nature, 418 (2002), 34–35, arXiv: gr-qc/0207049 | DOI | MR
[4] Amelino-Camelia G., “Doubly-special relativity: first results and key open problems”, Internat. J. Modern Phys. D, 11 (2002), 1643–1669, arXiv: gr-qc/0210063 | DOI | MR | Zbl
[5] Amelino-Camelia G., “On the fate of Lorentz symmetry in relative-locality momentum spaces”, Phys. Rev. D, 85 (2012), 084034, 16 pp., arXiv: 1110.5081 | DOI | MR
[6] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., “The principle of relative locality”, Phys. Rev. D, 84 (2011), 084010, 13 pp., arXiv: 1101.0931 | DOI
[7] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., “Relative locality and the soccer ball problem”, Phys. Rev. D, 84 (2011), 087702, 5 pp., arXiv: 1104.2019 | DOI
[8] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., “Reply to “Comment on ‘Relative locality and the soccer ball problem’ ””, Phys. Rev. D, 88 (2013), 028702, 5 pp., arXiv: 1307.0246 | DOI
[9] Amelino-Camelia G., Matassa M., Mercati F., Rosati G., “Taming nonlocality in theories with Planck-scale deformed Lorentz symmetry”, Phys. Rev. Lett., 106 (2011), 071301, 4 pp., arXiv: 1006.2126 | DOI
[10] Calmet X., Hossenfelder S., Percacci R., “Deformed special relativity from asymptotically safe gravity”, Phys. Rev. D, 82 (2010), 124024, 7 pp., arXiv: 1008.3345 | DOI | MR
[11] Carmona J. M., Cortés J. L., Mazón D., Mercati F., “About locality and the relativity principle beyond special relativity”, Phys. Rev. D, 84 (2011), 085010, 9 pp., arXiv: 1107.0939 | DOI
[12] Chandra N., Chatterjee S., “Thermodynamics of ideal gas in doubly special relativity”, Phys. Rev. D, 85 (2012), 045012, 9 pp., arXiv: 1108.0896 | DOI
[13] Chang L. N., Minic D., Okamura N., Takeuchi T., “Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations”, Phys. Rev. D, 65 (2002), 125027, 8 pp., arXiv: hep-th/0201017 | DOI | MR
[14] Das S., Ghosh S., Roychowdhury D., “Relativistic thermodynamics with an invariant energy scale”, Phys. Rev. D, 80 (2009), 125036, 8 pp., arXiv: 0908.0413 | DOI | MR
[15] Fityo T. V., “Statistical physics in deformed spaces with minimal length”, Phys. Lett. A, 372 (2008), 5872–5877, arXiv: 0712.0891 | DOI | MR | Zbl
[16] Girelli F., Livine E. R., Physics of deformed special relativity: relativity principle revisited, arXiv: gr-qc/0412004
[17] Hossenfelder S., “A note on theories with a minimal length”, Classical Quantum Gravity, 23 (2006), 1815–1821, arXiv: hep-th/0510245 | DOI | MR | Zbl
[18] Hossenfelder S., “Interpretation of quantum field theories with a minimal length scale”, Phys. Rev. D, 73 (2006), 105013, 9 pp., arXiv: hep-th/0603032 | DOI | MR
[19] Hossenfelder S., “Deformed special relativity in position space”, Phys. Lett. B, 649 (2007), 310–316, arXiv: gr-qc/0612167 | DOI | MR | Zbl
[20] Hossenfelder S., “Multiparticle states in deformed special relativity”, Phys. Rev. D, 75 (2007), 105005, 8 pp., arXiv: hep-th/0702016 | DOI | MR
[21] Hossenfelder S., The box-problem in deformed special relativity, arXiv: 0912.0090
[22] Hossenfelder S., “Bounds on an energy-dependent and observer-independent speed of light from violations of locality”, Phys. Rev. Lett., 104 (2010), 140402, 4 pp., arXiv: 1004.0418 | DOI
[23] Hossenfelder S., “Comment on “Relative locality and the soccer ball problem””, Phys. Rev. D, 88 (2013), 028701, 2 pp., arXiv: 1202.4066 | DOI
[24] Hossenfelder S., “Minimal length scale scenarios for quantum gravity”, Living Rev. Relativity, 16 (2013), 2, 90 pp., arXiv: 1203.6191 | DOI
[25] Jacob U., Mercati F., Amelino-Camelia G., Piran T., “Modifications to Lorentz invariant dispersion in relatively boosted frames”, Phys. Rev. D, 82 (2010), 084021, 11 pp., arXiv: 1004.0575 | DOI
[26] Judes S., Visser M., “Conservation laws in “doubly special relativity””, Phys. Rev. D, 68 (2003), 045001, 4 pp., arXiv: gr-qc/0205067 | DOI | MR | Zbl
[27] Kalyana Rama S., “Some consequences of the generalized uncertainty principle: statistical mechanical, cosmological, and varying speed of light”, Phys. Lett. B, 519 (2001), 103–110, arXiv: hep-th/0107255 | DOI | MR | Zbl
[28] Kostelecký V. A., Russell N., “Data tables for Lorentz and CPT violation”, Rev. Modern Phys., 83 (2011), 11, 21 pp., arXiv: 0801.0287 | DOI
[29] Kowalski-Glikman J., “Observer-independent quantum of mass”, Phys. Lett. A, 286 (2001), 391–394, arXiv: hep-th/0102098 | DOI | MR | Zbl
[30] Kowalski-Glikman J., “Doubly special quantum and statistical mechanics from quantum {$\kappa$}-{P}oincaré algebra”, Phys. Lett. A, 299 (2002), 454–460, arXiv: hep-th/0111110 | DOI | MR | Zbl
[31] Kowalski-Glikman J., “Introduction to doubly special relativity”, Planck Scale Effects in Astrophysics and Cosmology, Lecture Notes in Phys., 669, eds. G. Amelino-Camelia, J. Kowalski-Glikman, Springer, Berlin–New York, 2005, 131–159, arXiv: hep-th/0405273 | DOI
[32] Kowalski-Glikman J., Nowak S., “Doubly special relativity and de {S}itter space”, Classical Quantum Gravity, 20 (2003), 4799–4816, arXiv: hep-th/0304101 | DOI | MR | Zbl
[33] Liberati S., Sonego S., Visser M., “Interpreting doubly special relativity as a modified theory of measurement”, Phys. Rev. D, 71 (2005), 045001, 9 pp., arXiv: gr-qc/0410113 | DOI | MR
[34] Magueijo J., Could quantum gravity be tested with high intensity lasers?, Phys. Rev. D, 73 (2006), 124020, 11 pp., arXiv: gr-qc/0603073 | DOI
[35] Magueijo J., Smolin L., “Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88 (2002), 190403, 4 pp., arXiv: hep-th/0112090 | DOI
[36] Magueijo J., Smolin L., “Generalized {L}orentz invariance with an invariant energy scale”, Phys. Rev. D, 67 (2003), 044017, 12 pp., arXiv: gr-qc/0207085 | DOI | MR
[37] Nozari K., Fazlpour B., “Generalized uncertainty principle, modified dispersion relations and the early universe thermodynamics”, Gen. Relativity Gravitation, 38 (2006), 1661–1679, arXiv: gr-qc/0601092 | DOI | MR | Zbl
[38] Olmo G. J., “Palatini actions and quantum gravity phenomenology”, J. Cosmol. Astropart. Phys., 2011:10 (2011), 018, 15 pp., arXiv: 1101.2841 | DOI | MR
[39] Pedram P., “New approach to nonperturbative quantum mechanics with minimal length uncertainty”, Phys. Rev. D, 85 (2012), 024016, 12 pp., arXiv: 1112.2327 | DOI
[40] Percacci R., Vacca G. P., “Asymptotic safety, emergence and minimal length”, Classical Quantum Gravity, 27 (2010), 245026, 16 pp., arXiv: 1008.3621 | DOI | MR | Zbl
[41] Pikovski I., Vanner M. R., Aspelmeyer M., Kim M. S., Brukner Č., “Probing Planck-scale physics with quantum optics”, Nature Phys., 8 (2012), 393–397, arXiv: 1111.1979 | DOI
[42] Quesne C., Tkachuk V. M., “Composite system in deformed space with minimal length”, Phys. Rev. A, 81 (2010), 012106, 8 pp., arXiv: 0906.0050 | DOI
[43] Schützhold R., Unruh W. G., “Large-scale nonlocality in “doubly special relativity” with an energy-dependent speed of light”, JETP Lett., 78 (2003), 431–435, arXiv: gr-qc/0308049 | DOI
[44] Smolin L., On limitations of the extent of inertial frames in non-commutative spacetimes, arXiv: 1007.0718
[45] Smolin L., “Classical paradoxes of locality and their possible quantum resolutions in deformed special relativity”, Gen. Relativity Gravitation, 43 (2011), 3671–3691, arXiv: 1004.0664 | DOI | MR | Zbl
[46] Wang P., Yang H., Zhang X., “Quantum gravity effects on compact star cores”, Phys. Lett. B, 718 (2012), 265–269, arXiv: 1110.5550 | DOI
[47] Zhang X., Shao L., Ma B.-Q., “Photon gas thermodynamics in doubly special relativity”, Astropart. Phys., 34 (2011), 840–845, arXiv: 1102.2613 | DOI