@article{SIGMA_2014_10_a72,
author = {Yuri I. Manin and Matilde Marcolli},
title = {Big {Bang,} {Blowup,} and {Modular} {Curves:} {Algebraic} {Geometry} {in~Cosmology}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a72/}
}
TY - JOUR AU - Yuri I. Manin AU - Matilde Marcolli TI - Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a72/ LA - en ID - SIGMA_2014_10_a72 ER -
Yuri I. Manin; Matilde Marcolli. Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a72/
[1] BICEP2 Collaboration, “BICEP2 I: Detection of B-mode polarization at degree angular scales”, Phys. Rev. Lett., 112 (2014), 241101, 25 pp., arXiv: 1403.3985 | DOI
[2] Bognár J., Indefinite inner product spaces, Springer-Verlag, New York–Heidelberg, 1974 | MR | Zbl
[3] Bogoyavlenskiĭ O. I., Novikov S. P., “Singularities of the cosmological model of the {B}ianchi {$IX$} type according to the qualitative theory of differential equations”, J. Exp. Theor. Phys., 64 (1973), 1475–1494 | MR
[4] Bogoyavlensky O. I., Methods in the qualitative theory of dynamical systems in astrophysics and gas dynamics, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | DOI | MR
[5] Bourguignon J.-P., Gauduchon P., “Spineurs, opérateurs de {D}irac et variations de métriques”, Comm. Math. Phys., 144 (1992), 581–599 | DOI | MR | Zbl
[6] Chang C.-H., Mayer D., “Thermodynamic formalism and {S}elberg's zeta function for modular groups”, Regul. Chaotic Dyn., 5 (2000), 281–312 | DOI | MR | Zbl
[7] Chen L., Gibney A., Krashen D., “Pointed trees of projective spaces”, J. Algebraic Geom., 18 (2009), 477–509, arXiv: math.AG/0505296 | DOI | MR | Zbl
[8] Cirio L., Landi G., Szabo R. J., “Algebraic deformations of toric varieties. II: Noncommutative instantons”, Adv. Theor. Math. Phys., 15 (2011), 1817–1907, arXiv: 1106.5708 | DOI | MR | Zbl
[9] Cirio L. S., Landi G., Szabo R. J., “Algebraic deformations of toric varieties. I: {G}eneral constructions”, Adv. Math., 246 (2013), 33–88, arXiv: 1001.1242 | DOI | MR | Zbl
[10] Cirio L., Landi G., Szabo R. J., Instantons and vortices on noncommutative toric varieties, arXiv: 1212.3469
[11] Connes A., Landi G., “Noncommutative manifolds, the instanton algebra and isospectral deformations”, Comm. Math. Phys., 221 (2001), 141–159, arXiv: math.QA/0011194 | DOI | MR | Zbl
[12] Connes A., Moscovici H., “Type {III} and spectral triples”, Traces in number theory, geometry and quantum fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, 57–71, arXiv: math.OA/0609703 | MR
[13] Donaldson S., Friedman R., “Connected sums of self-dual manifolds and deformations of singular spaces”, Nonlinearity, 2 (1989), 197–239 | DOI | MR | Zbl
[14] Estrada C., Marcolli M., “Noncommutative Mixmaster cosmologies”, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1250086, 28 pp., arXiv: 1203.2679 | DOI | MR | Zbl
[15] Flores J. L., Herrera J., Sánchez M., “On the final definition of the causal boundary and its relation with the conformal boundary”, Adv. Theor. Math. Phys., 15 (2011), 991–1057, arXiv: 1001.3270 | DOI | MR | Zbl
[16] Fukuma M., Kono Y., Miwa A., “Effects of space-time noncommutativity on the angular power spectrum of the CMB”, Nuclear Phys. B, 682 (2004), 377–390, arXiv: hep-th/0307029 | DOI | Zbl
[17] Furusawa T., “Quantum chaos of {M}ixmaster universe”, Progr. Theoret. Phys., 75 (1986), 59–67 | DOI | MR
[18] Gayral V., Gracia-Bondía J. M., Iochum B., Schücker T., Várilly J. C., “Moyal planes are spectral triples”, Comm. Math. Phys., 246 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl
[19] Geroch R., Kronheimer E. H., Penrose R., “Ideal points in space-time”, Proc. Roy. Soc. London Ser. A, 327 (1972), 545–567 | DOI | MR | Zbl
[20] Greenfield M., Marcolli M., Teh K., Twisted spectral triples and quantum statistical mechanical systems, arXiv: 1305.5492
[21] Gurzadyan V. G., Penrose R., More on the low variance circles in CMB sky, arXiv: 1012.1486
[22] Gurzadyan V. G., Penrose R., “On CCC-predicted concentric low-variance circles in the CMB sky”, Eur. Phys. J., 128 (2013), 22, 17 pp., arXiv: 1302.5162 | DOI
[23] Hajian A., “Are there echoes from the Pre-Big Bang Universe? A search for low variance circles in the CMB sky”, Astrophys. J., 740:2 (2011), 52, 4 pp., arXiv: 1012.1656 | DOI
[24] Harlow D., Shenker S. H., Stanford D., Susskind L., “Tree-like structure of eternal inflation: a solvable model”, Phys. Rev. D, 85 (2012), 063516, 24 pp., arXiv: 1110.0496 | DOI
[25] Khalatnikov I. M., Lifshitz E. M., Khanin K. M., Shchur L. N., Sinaĭ Y. G., “On the stochasticity in relativistic cosmology”, J. Statist. Phys., 38 (1985), 97–114 | DOI | MR
[26] Lugo L. M., Chauvet P. A., “BKL method in the Bianchi IX universe model revisited”, Appl. Phys. Res., 5:6 (2013), 107–117 | DOI | MR
[27] Manin Yu. I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, 2nd ed., Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[28] Manin Yu. I., Geometry of Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 186, eds. A. Khovanskii, A. Varchenko, V. Vassiliev, Amer. Math. Soc., Providence, RI, 1998, Sixth {P}ainlevé equation, universal elliptic curve, and mirror of {${\mathbb P}^2$}, arXiv: alg-geom/9605010 | MR
[29] Manin Yu. I., Marcolli M., “Continued fractions, modular symbols, and noncommutative geometry”, Selecta Math. (N.S.), 8 (2002), 475–521, arXiv: math.NT/0102006 | DOI | MR | Zbl
[30] Manin Yu. I., Marcolli M., “Modular shadows and the {L}évy–{M}ellin {$\infty$}-adic transform”, Modular Forms on {S}chiermonnikoog, eds. B. Edixhoven, G. van der Geer, B. Moonen, Cambridge University Press, Cambridge, 2008, 189–238, arXiv: math.NT/0703718 | DOI | MR | Zbl
[31] Manin Yu. I., Marcolli M., “Moduli operad over ${\mathbb F}_1$”, Absolute Arithmetic and ${\mathbb F}_1$ Geometry, ed. K. Thas, Eur. Math. Soc., 2013, 331–364, arXiv: 1302.6526
[32] Marcolli M., “Solvmanifolds and noncommutative tori with real multiplication”, Commun. Number Theory Phys., 2 (2008), 421–476, arXiv: 0711.2036 | DOI | MR | Zbl
[33] Marcolli M., Tedeschi N., “Multifractals, {M}umford curves and eternal inflation”, p-Adic Numbers Ultrametric Anal. Appl., 6 (2014), 135–154, arXiv: 1311.5458 | DOI | MR
[34] Mayer D. H., “Relaxation properties of the Mixmaster universe”, Phys. Lett. A, 121 (1987), 390–394 | DOI | MR
[35] Moss A., Scott D., Zibin J. P., “No evidence for anomalously low variance circles on the sky”, J. Cosmol. Astropart. Phys., 2011:4 (2011), 033, 7 pp., arXiv: 1012.1305 | DOI
[36] Nautiyal A., “Anisotropic non-gaussianity with noncommutative spacetime”, Phys. Lett. B, 728 (2014), 472–481, arXiv: 1303.4159 | DOI | MR
[37] Newman E. T., “A fundamental solution to the CCC equations”, Gen. Relativity Gravitation, 46:5 (2014), 1717, 13 pp., arXiv: 1309.7271 | DOI
[38] Olive K. A., Peacock J. A. http://pdg.lbl.gov/2005/reviews/bigbangrpp.pdf
[39] Penrose R., “Conformal treatment of infinity”, Relativité, {G}roupes et {T}opologie, {S}ummer {S}chool of {T}heoret. {P}hys., {U}niv. {G}renoble, Lectures ({L}es {H}ouches, 1963), eds. B. deWitt, C. deWitt, Gordon and Breach, New York, 1964, 565–584 | MR
[40] Penrose R., “Singularities and time-asymmetry”, General Relativity: an Einstein Centenary Survey, eds. S. W. Hawking, W. Israel, Cambridge University Press, Cambridge, 1979, 581–638
[41] Penrose R., “Twistor geometry of conformal infinity”, The Conformal Structure of Space-Time, Lecture Notes in Phys., 604, eds. J. Frauendiener, H. Friedrich, Springer, Berlin, 2002, 113–121 | DOI | MR | Zbl
[42] Penrose R., Cycles of time. An extraordinary new view of the universe, Alfred A. Knopf, Inc., New York, 2010 | MR
[43] Series C., “The modular surface and continued fractions”, J. London Math. Soc., 31 (1985), 69–80 | DOI | MR | Zbl
[44] Shiraishi M., Mota D. F., Ricciardone A., Arroja F., CMB statistical anisotropy from noncommutative gravitational waves, arXiv: 1401.7936
[45] Takasaki K., “Painlevé–{C}alogero correspondence revisited”, J. Math. Phys., 42 (2001), 1443–1473, arXiv: math.QA/0004118 | DOI | MR | Zbl
[46] Tod P., “Penrose's circles in the {CMB} and a test of inflation”, Gen. Relativity Gravitation, 44 (2012), 2933–2938, arXiv: 1107.1421 | DOI | MR | Zbl
[47] van Suijlekom W. D., “The noncommutative {L}orentzian cylinder as an isospectral deformation”, J. Math. Phys., 45 (2004), 537–556, arXiv: math-ph/0310009 | DOI | MR | Zbl
[48] Wehus I. K., Eriksen H. K., “A search for concentric circles in the 7-year WMAP temperature sky maps”, Astrophys. J. Lett., 733 (2011), L29, 6 pp., arXiv: 1012.1268 | DOI
[49] Yamazaki H., Hara T., “Dirac decomposition of {W}heeler–{D}e{W}itt equation in the {B}ianchi {C}lass {A} models”, Progr. Theoret. Phys., 106 (2001), 323–337, arXiv: gr-qc/0101066 | DOI | MR | Zbl
[50] Zaldarriaga M., BICEP2 results: a view from the outside, Lecture given at the “Workshop on Primordial Gravitational Waves and Cosmology” (Burke Institute, Caltech, May 2014)