@article{SIGMA_2014_10_a71,
author = {Andrew Douglas and Joe Repka},
title = {The {GraviGUT} {Algebra} {Is} not {a~Subalgebra} of $E_8$, but $E_8$ {Does} {Contain} an {Extended} {GraviGUT} {Algebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a71/}
}
TY - JOUR AU - Andrew Douglas AU - Joe Repka TI - The GraviGUT Algebra Is not a Subalgebra of $E_8$, but $E_8$ Does Contain an Extended GraviGUT Algebra JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a71/ LA - en ID - SIGMA_2014_10_a71 ER -
%0 Journal Article %A Andrew Douglas %A Joe Repka %T The GraviGUT Algebra Is not a Subalgebra of $E_8$, but $E_8$ Does Contain an Extended GraviGUT Algebra %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a71/ %G en %F SIGMA_2014_10_a71
Andrew Douglas; Joe Repka. The GraviGUT Algebra Is not a Subalgebra of $E_8$, but $E_8$ Does Contain an Extended GraviGUT Algebra. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a71/
[1] Baez J., “The octonions”, Bull. Amer. Math. Soc., 39 (2002), 145–205, arXiv: math.RA/0105155 | DOI | MR | Zbl
[2] Baez J., Huerta J., “The algebra of grand unified theories”, Bull. Amer. Math. Soc., 47 (2010), 483–552, arXiv: 0904.1556 | DOI | MR | Zbl
[3] Distler J., Garibaldi S., “There is no “theory of everything” inside {$E_8$}”, Comm. Math. Phys., 298 (2010), 419–436, arXiv: 0905.2658 | DOI | MR | Zbl
[4] Douglas A., Kahrobaei D., Repka J., “Classification of embeddings of abelian extensions of {$D_n$} into {$E_{n+1}$}”, J. Pure Appl. Algebra, 217 (2013), 1942–1954 | DOI | MR | Zbl
[5] GAP-Groups, Algorithms, and programming, Version 4.2, , 2000 http://wwwgap.dcs.st-and.ac.uk/g̃ap
[6] Humphreys J. E., Introduction to {L}ie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York–Berlin, 1972 | DOI | MR | Zbl
[7] Lisi A. G., An exceptionally simple theory of everything, arXiv: 0711.0770
[8] Lisi A. G., “An explicit embedding of gravity and the {S}tandard {M}odel in {$E_8$}”, Representation Theory and Mathematical Physics, Contemp. Math., 557, Amer. Math. Soc., Providence, RI, 2011, 231–244, arXiv: 1006.4908 | DOI | MR | Zbl
[9] Malcev A. I., “Commutative subalgebras of semi-simple {L}ie algebras”, Amer. Math. Soc. Translation, 1951:40 (1951), 15 pp. | MR
[10] Minchenko A. N., “Semisimple subalgebras of exceptional {L}ie algebras”, Trans. Moscow Math. Soc., 67 (2006), 225–259 | DOI | MR | Zbl
[11] Mkrtchyan R. L., On the map of Vogel's plane, arXiv: 1209.5709
[12] Nesti F., Percacci R., “Chirality in unified theories of gravity”, Phys. Rev. D, 81 (2010), 025010, 7 pp., arXiv: 0909.4537 | DOI
[13] Vogel P., J. Pure Appl. Algebra, 215 (2011), Algebraic structures on modules of diagrams | DOI | MR