The GraviGUT Algebra Is not a Subalgebra of $E_8$, but $E_8$ Does Contain an Extended GraviGUT Algebra
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The (real) GraviGUT algebra is an extension of the $\mathfrak{spin}(11,3)$ algebra by a $64$-dimensional Lie algebra, but there is some ambiguity in the literature about its definition. Recently, Lisi constructed an embedding of the GraviGUT algebra into the quaternionic real form of $E_8$. We clarify the definition, showing that there is only one possibility, and then prove that the GraviGUT algebra cannot be embedded into any real form of $E_8$. We then modify Lisi's construction to create true Lie algebra embeddings of the extended GraviGUT algebra into $E_8$. We classify these embeddings up to inner automorphism.
Keywords: exceptional Lie algebra $E_8$; GraviGUT algebra; extended GraviGUT algebra; Lie algebra embeddings.
@article{SIGMA_2014_10_a71,
     author = {Andrew Douglas and Joe Repka},
     title = {The {GraviGUT} {Algebra} {Is} not {a~Subalgebra} of $E_8$, but $E_8$ {Does} {Contain} an {Extended} {GraviGUT} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a71/}
}
TY  - JOUR
AU  - Andrew Douglas
AU  - Joe Repka
TI  - The GraviGUT Algebra Is not a Subalgebra of $E_8$, but $E_8$ Does Contain an Extended GraviGUT Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a71/
LA  - en
ID  - SIGMA_2014_10_a71
ER  - 
%0 Journal Article
%A Andrew Douglas
%A Joe Repka
%T The GraviGUT Algebra Is not a Subalgebra of $E_8$, but $E_8$ Does Contain an Extended GraviGUT Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a71/
%G en
%F SIGMA_2014_10_a71
Andrew Douglas; Joe Repka. The GraviGUT Algebra Is not a Subalgebra of $E_8$, but $E_8$ Does Contain an Extended GraviGUT Algebra. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a71/

[1] Baez J., “The octonions”, Bull. Amer. Math. Soc., 39 (2002), 145–205, arXiv: math.RA/0105155 | DOI | MR | Zbl

[2] Baez J., Huerta J., “The algebra of grand unified theories”, Bull. Amer. Math. Soc., 47 (2010), 483–552, arXiv: 0904.1556 | DOI | MR | Zbl

[3] Distler J., Garibaldi S., “There is no “theory of everything” inside {$E_8$}”, Comm. Math. Phys., 298 (2010), 419–436, arXiv: 0905.2658 | DOI | MR | Zbl

[4] Douglas A., Kahrobaei D., Repka J., “Classification of embeddings of abelian extensions of {$D_n$} into {$E_{n+1}$}”, J. Pure Appl. Algebra, 217 (2013), 1942–1954 | DOI | MR | Zbl

[5] GAP-Groups, Algorithms, and programming, Version 4.2, , 2000 http://wwwgap.dcs.st-and.ac.uk/g̃ap

[6] Humphreys J. E., Introduction to {L}ie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York–Berlin, 1972 | DOI | MR | Zbl

[7] Lisi A. G., An exceptionally simple theory of everything, arXiv: 0711.0770

[8] Lisi A. G., “An explicit embedding of gravity and the {S}tandard {M}odel in {$E_8$}”, Representation Theory and Mathematical Physics, Contemp. Math., 557, Amer. Math. Soc., Providence, RI, 2011, 231–244, arXiv: 1006.4908 | DOI | MR | Zbl

[9] Malcev A. I., “Commutative subalgebras of semi-simple {L}ie algebras”, Amer. Math. Soc. Translation, 1951:40 (1951), 15 pp. | MR

[10] Minchenko A. N., “Semisimple subalgebras of exceptional {L}ie algebras”, Trans. Moscow Math. Soc., 67 (2006), 225–259 | DOI | MR | Zbl

[11] Mkrtchyan R. L., On the map of Vogel's plane, arXiv: 1209.5709

[12] Nesti F., Percacci R., “Chirality in unified theories of gravity”, Phys. Rev. D, 81 (2010), 025010, 7 pp., arXiv: 0909.4537 | DOI

[13] Vogel P., J. Pure Appl. Algebra, 215 (2011), Algebraic structures on modules of diagrams | DOI | MR