Spherical Functions of Fundamental $K$-Types Associated with the $n$-Dimensional Sphere
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we describe the irreducible spherical functions of fundamental $K$-types associated with the pair $(G,K)=({\mathrm{SO}}(n+1),{\mathrm{SO}}(n))$ in terms of matrix hypergeometric functions. The output of this description is that the irreducible spherical functions of the same $K$-fundamental type are encoded in new examples of classical sequences of matrix-valued orthogonal polynomials, of size $2$ and $3$, with respect to a matrix-weight $W$ supported on $[0,1]$. Moreover, we show that $W$ has a second order symmetric hypergeometric operator $D$.
Keywords: matrix-valued spherical functions; matrix orthogonal polynomials; the matrix hypergeometric operator; $n$-dimensional sphere.
@article{SIGMA_2014_10_a70,
     author = {Juan Alfredo Tirao and Ignacio Nahuel Zurri\'an},
     title = {Spherical {Functions} of {Fundamental} $K${-Types} {Associated} with the $n${-Dimensional} {Sphere}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a70/}
}
TY  - JOUR
AU  - Juan Alfredo Tirao
AU  - Ignacio Nahuel Zurrián
TI  - Spherical Functions of Fundamental $K$-Types Associated with the $n$-Dimensional Sphere
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a70/
LA  - en
ID  - SIGMA_2014_10_a70
ER  - 
%0 Journal Article
%A Juan Alfredo Tirao
%A Ignacio Nahuel Zurrián
%T Spherical Functions of Fundamental $K$-Types Associated with the $n$-Dimensional Sphere
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a70/
%G en
%F SIGMA_2014_10_a70
Juan Alfredo Tirao; Ignacio Nahuel Zurrián. Spherical Functions of Fundamental $K$-Types Associated with the $n$-Dimensional Sphere. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a70/

[1] Cooper A., The classifying ring of groups whose classifying ring is commutative, Ph.D. Thesis, Massachusetts Institute of Technology, 1975

[2] Duran A. J., “Matrix inner product having a matrix symmetric second order differential operator”, Rocky Mountain J. Math., 27 (1997), 585–600 | DOI | MR | Zbl

[3] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[4] Gangolli R., Varadarajan V. S., Harmonic analysis of spherical functions on real reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 101, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl

[5] Grünbaum F. A., Pacharoni I., Tirao J., “Matrix valued spherical functions associated to the complex projective plane”, J. Funct. Anal., 188 (2002), 350–441, arXiv: math.RT/0108042 | DOI | MR

[6] Grünbaum F. A., Pacharoni I., Tirao J., “Matrix valued spherical functions associated to the three dimensional hyperbolic space”, Internat. J. Math., 13 (2002), 727–784, arXiv: math.RT/0203211 | DOI | MR

[7] Grünbaum F. A., Pacharoni I., Tirao J., “Matrix valued orthogonal polynomials of the {J}acobi type”, Indag. Math. (N.S.), 14 (2003), 353–366 | DOI | MR

[8] Grünbaum F. A., Pacharoni I., Tirao J., “Matrix valued orthogonal polynomials of {J}acobi type: the role of group representation theory”, Ann. Inst. Fourier (Grenoble), 55 (2005), 2051–2068 | DOI | MR

[9] Grünbaum F. A., Tirao J., “The algebra of differential operators associated to a weight matrix”, Integral Equations Operator Theory, 58 (2007), 449–475 | DOI | MR

[10] Heckman G., van Pruijssen M., Matrix valued orthogonal polynomials for Gelfand pairs of rank one, arXiv: 1310.5134

[11] Helgason S., Differential geometry and symmetric spaces, Pure and Applied Mathematics, 12, Academic Press, New York–London, 1962 | MR | Zbl

[12] Helgason S., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs, 83, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[13] Knop F., “Der {Z}entralisator einer {L}iealgebra in einer einhüllenden {A}lgebra”, J. Reine Angew. Math., 406 (1990), 5–9 | DOI | MR | Zbl

[14] Koelink E., van Pruijssen M., Román P., “Matrix-valued orthogonal polynomials related to {$({\rm SU}(2)\times{\rm SU}(2),{\rm diag})$}”, Int. Math. Res. Not., 2012 (2012), 5673–5730, arXiv: 1012.2719 | DOI | MR | Zbl

[15] Koelink E., van Pruijssen M., Román P., “Matrix-valued orthogonal polynomials related to {$({\rm SU}(2)\times{\rm SU}(2),{\rm diag})$}, {II}”, Publ. Res. Inst. Math. Sci., 49 (2013), 271–312, arXiv: 1203.0041 | DOI | MR | Zbl

[16] Pacharoni I., Román P., “A sequence of matrix valued orthogonal polynomials associated to spherical functions”, Constr. Approx., 28 (2008), 127–147, arXiv: math.RT/0702494 | DOI | MR | Zbl

[17] Pacharoni I., Tirao J., “Three term recursion relation for spherical functions associated to the complex projective plane”, Math. Phys. Anal. Geom., 7 (2004), 193–221 | DOI | MR | Zbl

[18] Pacharoni I., Tirao J., “Matrix valued orthogonal polynomials arising from the complex projective space”, Constr. Approx., 25 (2007), 177–192 | DOI | MR | Zbl

[19] Pacharoni I., Tirao J., “One-step spherical functions of the pair {$({\rm SU}(n+1),{\rm U}(n))$}”, Lie groups: structure, actions, and representations, Progr. Math., 306, Birkhäuser/Springer, New York, 2013, 309–354, arXiv: 1209.4500 | DOI | MR | Zbl

[20] Pacharoni I., Zurrián I., Matrix ultraspherical polynomials: the $2\times 2$ fundamental cases, arXiv: 1309.6902

[21] Tirao J., “Spherical functions”, Rev. Un. Mat. Argentina, 28 (1977), 75–98 | MR | Zbl

[22] Tirao J., “The matrix-valued hypergeometric equation”, Proc. Natl. Acad. Sci. USA, 100 (2003), 8138–8141 | DOI | MR | Zbl

[23] Tirao J., Zurrián I., “Spherical functions: the spheres vs. the projective spaces”, J. Lie Theory, 24 (2014), 147–157, arXiv: 1207.0024 | Zbl

[24] Vilenkin N. J., Klimyk A. U., Representation of {L}ie groups and special functions, v. 3, Mathematics and its Applications (Soviet Series), 75, Classical and quantum groups and special functions, Kluwer Academic Publishers Group, Dordrecht, 1992 | DOI | MR | Zbl

[25] Zurrián I., Funciones Esféricas Matriciales Asociadas a las Esferas yal os Espacios Proyectivos Reales, Ph.D. Thesis, Universidad Nacional de Córdoba, 2013 , arXiv: http://www2.famaf.unc.edu.ar/publicaciones/documents/serie_d/DMat76.pdf1306.6581