Systems of Differential Operators and Generalized Verma Modules
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we close the cases that were left open in our earlier works on the study of conformally invariant systems of second-order differential operators for degenerate principal series. More precisely, for these cases, we find the special values of the systems of differential operators, and determine the standardness of the homomorphisms between the generalized Verma modules, that come from the conformally invariant systems.
Keywords: conformally invariant systems; quasi-invariant differential operators; intertwining differential operators; real flag manifolds; generalized Verma modules; standard maps.
@article{SIGMA_2014_10_a7,
     author = {Toshihisa Kubo},
     title = {Systems of {Differential} {Operators} and {Generalized} {Verma} {Modules}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a7/}
}
TY  - JOUR
AU  - Toshihisa Kubo
TI  - Systems of Differential Operators and Generalized Verma Modules
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a7/
LA  - en
ID  - SIGMA_2014_10_a7
ER  - 
%0 Journal Article
%A Toshihisa Kubo
%T Systems of Differential Operators and Generalized Verma Modules
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a7/
%G en
%F SIGMA_2014_10_a7
Toshihisa Kubo. Systems of Differential Operators and Generalized Verma Modules. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a7/

[1] Barchini L., Kable A. C., Zierau R., “Conformally invariant systems of differential equations and prehomogeneous vector spaces of {H}eisenberg parabolic type,”, Publ. Res. Inst. Math. Sci., 44 (2008), 749–835 | DOI | MR | Zbl

[2] Barchini L., Kable A. C., Zierau R., “Conformally invariant systems of differential operators”, Adv. Math., 221 (2009), 788–811 | DOI | MR | Zbl

[3] Baston R. J., Eastwood M. G., The {P}enrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989 | MR | Zbl

[4] Boe B. D., “Homomorphisms between generalized {V}erma modules”, Trans. Amer. Math. Soc., 288 (1985), 791–799 | DOI | MR | Zbl

[5] Boe B. D., Collingwood D. H., “Intertwining operators between holomorphically induced modules”, Pacific J. Math., 124 (1986), 73–84 | DOI | MR | Zbl

[6] Bourbaki N., Éléments de mathématique. Groupes et algèbres de Lie, Chapitres 4–6, Masson, Paris, 1981 | MR

[7] Collingwood D. H., Shelton B., “A duality theorem for extensions of induced highest weight modules”, Pacific J. Math., 146 (1990), 227–237 | DOI | MR | Zbl

[8] Davidson M. G., Enright T. J., Stanke R. J., Differential operators and highest weight representations, Mem. Amer. Math. Soc., 94, no. 455, 1991, iv+102 pp. | DOI | MR

[9] Dobrev V., “Canonical construction of differential operators intertwining representations of real semisimple”, Rep. Math. Phys., 25 (1988), 159–181 | DOI | MR | Zbl

[10] Dobrev V., “Invariant differential operators for non-compact {L}ie algebras parabolically related to conformal {L}ie algebras”, J. High Energy Phys., 2013:2 (2013), 015, 41 pp., arXiv: 1208.0409 | DOI | MR

[11] Dobrev V., Invariant differential operators for non-compact {L}ie groups: the reduced ${\rm SU}(3,3)$ multiplets, arXiv: 1312.5998

[12] Ehrenpreis L., “Hypergeometric functions”, Algebraic Analysis, v. I, Academic Press, Boston, MA, 1988, 85–128 | MR

[13] Harris M., Jakobsen H. P., “Singular holomorphic representations and singular modular forms”, Math. Ann., 259 (1982), 227–244 | DOI | MR | Zbl

[14] Huang J. S., “Intertwining differential operators and reducibility of generalized {V}erma modules”, Math. Ann., 297 (1993), 309–324 | DOI | MR | Zbl

[15] Jakobsen H. P., “Basic covariant differential operators on {H}ermitian symmetric spaces”, Ann. Sci. École Norm. Sup., 18 (1985), 421–436 | MR | Zbl

[16] Johnson K. D., Korányi A., Reimann H. M., “Equivariant first order differential operators for parabolic geometries”, Indag. Math. (N.S.), 14 (2003), 385–393 | DOI | MR | Zbl

[17] Juhl A., Families of conformally covariant differential operators,{$Q$}-curvature and holography, Progress in Mathematics, 275, Birkhäuser Verlag, Basel, 2009 | DOI | MR | Zbl

[18] Kable A. C., “{$K$}-finite solutions to conformally invariant systems of differential equations”, Tohoku Math. J., 63 (2011), 539–559 | DOI | MR | Zbl

[19] Kable A. C., “Conformally invariant systems of differential equations on flag manifolds for {$G_2$} and their {$K$}-finite solutions”, J. Lie Theory, 22 (2012), 93–136 | MR | Zbl

[20] Kable A. C., “The {H}eisenberg ultrahyperbolic equation: {$K$}-finite and polynomial solutions”, Kyoto J. Math., 52 (2012), 839–894 | DOI | MR | Zbl

[21] Kable A. C., “The {H}eisenberg ultrahyperbolic equation: the basic solutions as distributions”, Pacific J. Math., 258 (2012), 165–197 | DOI | MR | Zbl

[22] Kable A. C., “On certain conformally invariant systems of differential equations”, New York J. Math., 19 (2013), 189–251 http://nyjm.albany.edu:8000/j/2013/19_189.html | MR | Zbl

[23] Klimyk A. U., “Decomposition of a direct product of irreducible representations of a semisimple Lie algebra into a direct sum of irreducible representations”, Thirteen Papers on Algebra and Analysis, Amer. Math. Soc. Translations, 76, Amer. Math. Soc., Providence, R.I., 1968, 63–74

[24] Knapp A. W., Lie groups beyond an introduction, Progress in Mathematics, 140, 2nd ed., Birkhäuser Boston Inc., Boston, MA, 2002 | MR | Zbl

[25] Knapp A. W., J. Funct. Anal., 209 (2004), Nilpotent orbits and some small unitary representations of indefinite orthogonal groups | DOI | MR

[26] Kobayashi T., Ørsted B., “Analysis on the minimal representation of {${\rm O}(p,q)$}. I: {R}ealization via conformal geometry”, Adv. Math., 180 (2003), 486–512, arXiv: math.RT/0111083 | DOI | MR | Zbl

[27] Kobayashi T., Ørsted B., “Analysis on the minimal representation of ${\rm O}(p,q)$. II: {B}ranching laws”, Adv. Math., 180 (2003), 513–550, arXiv: math.RT/0111085 | DOI | MR | Zbl

[28] Kobayashi T., Ørsted B., “Analysis on the minimal representation of {${\rm O}(p,q)$}. III: {U}ltrahyperbolic equations on {${\mathbb R}^{p-1,q-1}$}”, Adv. Math., 180 (2003), 551–595, arXiv: math.RT/0111086 | DOI | MR | Zbl

[29] Kobayashi T., Ørsted B., Somberg P., Soucek V., Branching laws for {V}erma modules and applications in parabolic geometry, I, arXiv: 1305.6040

[30] Kobayashi T., Pevzner M., {R}ankin–{C}ohen operators for symmetric pairs, arXiv: 1301.2111

[31] Korányi A., Reimann H. M., “Equivariant first order differential operators on boundaries of symmetric spaces”, Invent. Math., 139 (2000), 371–390 | DOI | MR | Zbl

[32] Kostant B., “Verma modules and the existence of quasi-invariant differential operators”, Non-Commutative Harmonic Analysis, {A}ctes {C}olloq. ({M}arseille-{L}uminy, 1974), Lecture Notes in Math., 446, Springer, Berlin, 1975, 101–128 | DOI | MR

[33] Kubo T., “A system of third-order differential operators conformally invariant under {$\mathfrak{sl}(3,{\mathbb C})$} and {$\mathfrak{so}(8,{\mathbb C})$}”, Pacific J. Math., 253 (2011), 439–453, arXiv: 1104.1999 | DOI | MR | Zbl

[34] Kubo T., “On the homomorphisms between the generalized {V}erma modules arising from conformally invariant systems”, J. Lie Theory, 23 (2013), 847–883, arXiv: 1209.5516 | MR | Zbl

[35] Kubo T., “Special values for conformally invariant systems associated to maximal parabolics of quasi-{H}eisenberg type”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1209.1861

[36] Lepowsky J., “A generalization of the {B}ernstein–{G}elfand–{G}elfand resolution”, J. Algebra, 49 (1977), 496–511 | DOI | MR | Zbl

[37] Matumoto H., “The homomorphisms between scalar generalized {V}erma modules associated to maximal parabolic subalgebras”, Duke Math. J., 131 (2006), 75–119, arXiv: math.RT/0309454 | DOI | MR

[38] Matumoto H., On the homomorphisms between scalar generalized {V}erma modules, arXiv: 1205.6748

[39] Somberg P., The {F}-method and a branching problem for generalized {V}erma modules associated to (Lie $G_2$, $so$(7)), arXiv: 1303.7311

[40] Wallach N. R., “The analytic continuation of the discrete series, II”, Trans. Amer. Math. Soc., 251 (1979), 19–37 | DOI | MR | Zbl