@article{SIGMA_2014_10_a7,
author = {Toshihisa Kubo},
title = {Systems of {Differential} {Operators} and {Generalized} {Verma} {Modules}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a7/}
}
Toshihisa Kubo. Systems of Differential Operators and Generalized Verma Modules. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a7/
[1] Barchini L., Kable A. C., Zierau R., “Conformally invariant systems of differential equations and prehomogeneous vector spaces of {H}eisenberg parabolic type,”, Publ. Res. Inst. Math. Sci., 44 (2008), 749–835 | DOI | MR | Zbl
[2] Barchini L., Kable A. C., Zierau R., “Conformally invariant systems of differential operators”, Adv. Math., 221 (2009), 788–811 | DOI | MR | Zbl
[3] Baston R. J., Eastwood M. G., The {P}enrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989 | MR | Zbl
[4] Boe B. D., “Homomorphisms between generalized {V}erma modules”, Trans. Amer. Math. Soc., 288 (1985), 791–799 | DOI | MR | Zbl
[5] Boe B. D., Collingwood D. H., “Intertwining operators between holomorphically induced modules”, Pacific J. Math., 124 (1986), 73–84 | DOI | MR | Zbl
[6] Bourbaki N., Éléments de mathématique. Groupes et algèbres de Lie, Chapitres 4–6, Masson, Paris, 1981 | MR
[7] Collingwood D. H., Shelton B., “A duality theorem for extensions of induced highest weight modules”, Pacific J. Math., 146 (1990), 227–237 | DOI | MR | Zbl
[8] Davidson M. G., Enright T. J., Stanke R. J., Differential operators and highest weight representations, Mem. Amer. Math. Soc., 94, no. 455, 1991, iv+102 pp. | DOI | MR
[9] Dobrev V., “Canonical construction of differential operators intertwining representations of real semisimple”, Rep. Math. Phys., 25 (1988), 159–181 | DOI | MR | Zbl
[10] Dobrev V., “Invariant differential operators for non-compact {L}ie algebras parabolically related to conformal {L}ie algebras”, J. High Energy Phys., 2013:2 (2013), 015, 41 pp., arXiv: 1208.0409 | DOI | MR
[11] Dobrev V., Invariant differential operators for non-compact {L}ie groups: the reduced ${\rm SU}(3,3)$ multiplets, arXiv: 1312.5998
[12] Ehrenpreis L., “Hypergeometric functions”, Algebraic Analysis, v. I, Academic Press, Boston, MA, 1988, 85–128 | MR
[13] Harris M., Jakobsen H. P., “Singular holomorphic representations and singular modular forms”, Math. Ann., 259 (1982), 227–244 | DOI | MR | Zbl
[14] Huang J. S., “Intertwining differential operators and reducibility of generalized {V}erma modules”, Math. Ann., 297 (1993), 309–324 | DOI | MR | Zbl
[15] Jakobsen H. P., “Basic covariant differential operators on {H}ermitian symmetric spaces”, Ann. Sci. École Norm. Sup., 18 (1985), 421–436 | MR | Zbl
[16] Johnson K. D., Korányi A., Reimann H. M., “Equivariant first order differential operators for parabolic geometries”, Indag. Math. (N.S.), 14 (2003), 385–393 | DOI | MR | Zbl
[17] Juhl A., Families of conformally covariant differential operators,{$Q$}-curvature and holography, Progress in Mathematics, 275, Birkhäuser Verlag, Basel, 2009 | DOI | MR | Zbl
[18] Kable A. C., “{$K$}-finite solutions to conformally invariant systems of differential equations”, Tohoku Math. J., 63 (2011), 539–559 | DOI | MR | Zbl
[19] Kable A. C., “Conformally invariant systems of differential equations on flag manifolds for {$G_2$} and their {$K$}-finite solutions”, J. Lie Theory, 22 (2012), 93–136 | MR | Zbl
[20] Kable A. C., “The {H}eisenberg ultrahyperbolic equation: {$K$}-finite and polynomial solutions”, Kyoto J. Math., 52 (2012), 839–894 | DOI | MR | Zbl
[21] Kable A. C., “The {H}eisenberg ultrahyperbolic equation: the basic solutions as distributions”, Pacific J. Math., 258 (2012), 165–197 | DOI | MR | Zbl
[22] Kable A. C., “On certain conformally invariant systems of differential equations”, New York J. Math., 19 (2013), 189–251 http://nyjm.albany.edu:8000/j/2013/19_189.html | MR | Zbl
[23] Klimyk A. U., “Decomposition of a direct product of irreducible representations of a semisimple Lie algebra into a direct sum of irreducible representations”, Thirteen Papers on Algebra and Analysis, Amer. Math. Soc. Translations, 76, Amer. Math. Soc., Providence, R.I., 1968, 63–74
[24] Knapp A. W., Lie groups beyond an introduction, Progress in Mathematics, 140, 2nd ed., Birkhäuser Boston Inc., Boston, MA, 2002 | MR | Zbl
[25] Knapp A. W., J. Funct. Anal., 209 (2004), Nilpotent orbits and some small unitary representations of indefinite orthogonal groups | DOI | MR
[26] Kobayashi T., Ørsted B., “Analysis on the minimal representation of {${\rm O}(p,q)$}. I: {R}ealization via conformal geometry”, Adv. Math., 180 (2003), 486–512, arXiv: math.RT/0111083 | DOI | MR | Zbl
[27] Kobayashi T., Ørsted B., “Analysis on the minimal representation of ${\rm O}(p,q)$. II: {B}ranching laws”, Adv. Math., 180 (2003), 513–550, arXiv: math.RT/0111085 | DOI | MR | Zbl
[28] Kobayashi T., Ørsted B., “Analysis on the minimal representation of {${\rm O}(p,q)$}. III: {U}ltrahyperbolic equations on {${\mathbb R}^{p-1,q-1}$}”, Adv. Math., 180 (2003), 551–595, arXiv: math.RT/0111086 | DOI | MR | Zbl
[29] Kobayashi T., Ørsted B., Somberg P., Soucek V., Branching laws for {V}erma modules and applications in parabolic geometry, I, arXiv: 1305.6040
[30] Kobayashi T., Pevzner M., {R}ankin–{C}ohen operators for symmetric pairs, arXiv: 1301.2111
[31] Korányi A., Reimann H. M., “Equivariant first order differential operators on boundaries of symmetric spaces”, Invent. Math., 139 (2000), 371–390 | DOI | MR | Zbl
[32] Kostant B., “Verma modules and the existence of quasi-invariant differential operators”, Non-Commutative Harmonic Analysis, {A}ctes {C}olloq. ({M}arseille-{L}uminy, 1974), Lecture Notes in Math., 446, Springer, Berlin, 1975, 101–128 | DOI | MR
[33] Kubo T., “A system of third-order differential operators conformally invariant under {$\mathfrak{sl}(3,{\mathbb C})$} and {$\mathfrak{so}(8,{\mathbb C})$}”, Pacific J. Math., 253 (2011), 439–453, arXiv: 1104.1999 | DOI | MR | Zbl
[34] Kubo T., “On the homomorphisms between the generalized {V}erma modules arising from conformally invariant systems”, J. Lie Theory, 23 (2013), 847–883, arXiv: 1209.5516 | MR | Zbl
[35] Kubo T., “Special values for conformally invariant systems associated to maximal parabolics of quasi-{H}eisenberg type”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1209.1861
[36] Lepowsky J., “A generalization of the {B}ernstein–{G}elfand–{G}elfand resolution”, J. Algebra, 49 (1977), 496–511 | DOI | MR | Zbl
[37] Matumoto H., “The homomorphisms between scalar generalized {V}erma modules associated to maximal parabolic subalgebras”, Duke Math. J., 131 (2006), 75–119, arXiv: math.RT/0309454 | DOI | MR
[38] Matumoto H., On the homomorphisms between scalar generalized {V}erma modules, arXiv: 1205.6748
[39] Somberg P., The {F}-method and a branching problem for generalized {V}erma modules associated to (Lie $G_2$, $so$(7)), arXiv: 1303.7311
[40] Wallach N. R., “The analytic continuation of the discrete series, II”, Trans. Amer. Math. Soc., 251 (1979), 19–37 | DOI | MR | Zbl