Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System $\mathrm{G(1112)}$
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We have classified special solutions around the origin for the two-dimensional degenerate Garnier system $\mathrm{G(1112)}$ with generic values of complex parameters, whose linear monodromy can be calculated explicitly.
Keywords: two-dimensional degenerate Garnier system; monodromy data.
@article{SIGMA_2014_10_a68,
     author = {Kazuo Kaneko},
     title = {Special {Solutions} and {Linear} {Monodromy} for the {Two-Dimensional} {Degenerate} {Garnier} {System~}$\mathrm{G(1112)}$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a68/}
}
TY  - JOUR
AU  - Kazuo Kaneko
TI  - Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System $\mathrm{G(1112)}$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a68/
LA  - en
ID  - SIGMA_2014_10_a68
ER  - 
%0 Journal Article
%A Kazuo Kaneko
%T Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System $\mathrm{G(1112)}$
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a68/
%G en
%F SIGMA_2014_10_a68
Kazuo Kaneko. Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System $\mathrm{G(1112)}$. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a68/

[1] Appell P., “Sur les polynômes se rattachant à l'équation différentielle {$y''=6y\sp 2+x$}”, Bull. Soc. Math. France, 45 (1917), 150–153 | MR | Zbl

[2] Bolibruch A. A., “On isomonodromic confluences of {F}uchsian singularities”, Proc. Steklov Inst. Math., 221, 1998, 117–132

[3] Briot C., Bouquet J. C., “Recherches sur les propriétés des fonctions définies par des équations différentielles”, J. de l'Ecole Polytechnique, 21 (1856), 133–198

[4] Garnier R., “Étude de l'intégrale générale de l'équation {VI} de {M}. {P}ainlevé dans le voisinage de ses singularités transcendantes”, Ann. Sci. École Norm. Sup. (3), 34 (1917), 239–353 | MR | Zbl

[5] Gérard R., Sibuya Y., “Étude de certains systèmes de {P}faff au voisinage d'une singularité”, C. R. Acad. Sci. Paris Sér. A-B, 284 (1977), A57–A60

[6] Heading J., “The {S}tokes phenomenon and the {W}hittaker function”, J. London Math. Soc., 37 (1962), 195–208 | DOI | MR | Zbl

[7] Iwasaki K., Kimura H., Shimomura S., Yoshida M., “From {G}auss to {P}ainlevé. A modern theory of special functions”, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR | Zbl

[8] Jimbo M., “Monodromy problem and the boundary condition for some {P}ainlevé equations”, Publ. Res. Inst. Math. Sci., 18 (1982), 1137–1161 | DOI | MR | Zbl

[9] Kaneko K., “A new solution of the fourth {P}ainlevé equation with a solvable monodromy”, Proc. Japan Acad. Ser. A Math. Sci., 81 (2005), 75–79 | DOI | MR | Zbl

[10] Kaneko K., “Local expansion of {P}ainlevé {VI} transcendents around a fixed singularity”, J. Math. Phys., 50 (2009), 013531, 24 pp. | DOI | MR | Zbl

[11] Kaneko K., Ohyama Y., “Fifth {P}ainlevé transcendents which are analytic at the origin”, Funkcial. Ekvac., 50 (2007), 187–212 | DOI | MR | Zbl

[12] Kaneko K., Ohyama Y., “Meromorphic {P}ainlevé transcendents at a fixed singularity”, Math. Nachr., 286 (2013), 861–875 | DOI | MR | Zbl

[13] Kimura H., “The degeneration of the two-dimensional {G}arnier system and the polynomial {H}amiltonian structure”, Ann. Mat. Pura Appl. (4), 155 (1989), 25–74 | DOI | MR | Zbl

[14] Kitaev A. V., “Symmetric solutions for the first and the second {P}ainlevé equation”, J. Math. Sci., 73 (1995), 494–499 | DOI | MR

[15] Kohno M., Global analysis in linear differential equations, Mathematics and its Applications, 471, Kluwer Academic Publishers, Dordrecht, 1999 | DOI | MR | Zbl

[16] Okamoto K., “Isomonodromic deformation and {P}ainlevé equations, and the {G}arnier system”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33 (1986), 575–618 | MR | Zbl