Groupoid Actions on Fractafolds
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a bundle over a totally disconnected set such that each fiber is homeomorphic to a fractal blowup. We prove that there is a natural action of a Renault–Deaconu groupoid on our fractafold bundle and that the resulting action groupoid is a Renault–Deaconu groupoid itself. We also show that when the bundle is locally compact the associated $C^*$-algebra is primitive and has a densely defined lower-semicontinuous trace.
Keywords: Renault–Deaconu groupoids; fractafolds; iterated function systems.
@article{SIGMA_2014_10_a67,
     author = {Marius Ionescu and Alex Kumjian},
     title = {Groupoid {Actions} on {Fractafolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a67/}
}
TY  - JOUR
AU  - Marius Ionescu
AU  - Alex Kumjian
TI  - Groupoid Actions on Fractafolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a67/
LA  - en
ID  - SIGMA_2014_10_a67
ER  - 
%0 Journal Article
%A Marius Ionescu
%A Alex Kumjian
%T Groupoid Actions on Fractafolds
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a67/
%G en
%F SIGMA_2014_10_a67
Marius Ionescu; Alex Kumjian. Groupoid Actions on Fractafolds. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a67/

[1] Anantharaman-Delaroche C., “Purely infinite {$C\sp *$}-algebras arising from dynamical systems”, Bull. Soc. Math. France, 125 (1997), 199–225 | MR | Zbl

[2] Anantharaman-Delaroche C., Renault J., “Amenable groupoids”, Groupoids in Analysis, Geometry, and Physics (Boulder, CO, 1999), Contemp. Math., 282, Amer. Math. Soc., Providence, RI, 2001, 35–46 | DOI | MR

[3] Barnsley M. F., Fractals everywhere, 2nd ed., Academic Press Professional, Boston, MA, 1993 | MR | Zbl

[4] Blackadar B., Operator algebras. Theory of $C^{*}$-algebras and von Neumann algebras, Encyclopaedia of Mathematical Sciences. Operator algebras and non-commutative geometry, III, 122, Springer-Verlag, Berlin, 2006 | MR | Zbl

[5] Brown J., Clark L. O., Farthing C., Sims A., “Simplicity of algebras associated to étale groupoids”, Semigroup Forum, 88 (2014), 433–452, arXiv: 1204.3127 | DOI | MR | Zbl

[6] Curtis D. W., Patching D. S., “Hyperspaces of direct limits of locally compact metric spaces”, Topology Appl., 29 (1988), 55–60 | DOI | MR | Zbl

[7] Deaconu V., “Groupoids associated with endomorphisms”, Trans. Amer. Math. Soc., 347 (1995), 1779–1786 | DOI | MR | Zbl

[8] Deaconu V., Kumjian A., Muhly P., “Cohomology of topological graphs and {C}untz–{P}imsner algebras”, J. Operator Theory, 46 (2001), 251–264, arXiv: math.OA/9901094 | MR | Zbl

[9] Edgar G., Measure, topology, and fractal geometry, Undergraduate Texts in Mathematics, 2nd ed., Springer, New York, 2008 | DOI | MR

[10] Exel R., “Non-{H}ausdorff étale groupoids”, Proc. Amer. Math. Soc., 139 (2011), 897–907, arXiv: 0812.4087 | DOI | MR | Zbl

[11] Hutchinson J. E., “Fractals and self-similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl

[12] McDonald J. N., Weiss N. A., A course in real analysis, 2nd ed., Academic Press Inc., Amsterdam, 2013 | Zbl

[13] Muhly P. S., Renault J. N., Williams D. P., “Equivalence and isomorphism for groupoid {$C^\ast$}-algebras”, J. Operator Theory, 17 (1987), 3–22 | MR | Zbl

[14] Pedersen G. K., $C\sp{\ast} $-algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press, Inc., London–New York, 1979 | MR | Zbl

[15] Pimsner M. V., “A class of {$C^*$}-algebras generalizing both {C}untz–{K}rieger algebras and crossed products by {$Z$}”, Free Probability Theory ({W}aterloo, {ON}, 1995), Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997, 189–212 | MR | Zbl

[16] Renault J., A groupoid approach to {$C^{\ast}$}-algebras, Lecture Notes in Mathematics, 793, Springer, Berlin, 1980 | MR | Zbl

[17] Renault J., “Cuntz-like algebras”, Operator Theoretical Methods (Timişoara, 1998), Theta Found., Bucharest, 2000, 371–386, arXiv: math.OA/9905185 | MR | Zbl

[18] Renault J., “Cartan subalgebras in {$C^*$}-algebras”, Irish Math. Soc. Bull., 2008, 29–63, arXiv: 0803.2284 | MR | Zbl

[19] Strichartz R. S., “Fractals in the large”, Canad. J. Math., 50 (1998), 638–657 | DOI | MR | Zbl

[20] Strichartz R. S., Differential equations on fractals. A tutorial, Princeton University Press, Princeton, NJ, 2006 | MR | Zbl