Asymptotic Analysis of the Ponzano–Regge Model with Non-Commutative Metric Boundary Data
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the non-commutative Fourier transform for Lie groups to formulate the non-commutative metric representation of the Ponzano–Regge spin foam model for 3d quantum gravity. The non-commutative representation allows to express the amplitudes of the model as a first order phase space path integral, whose properties we consider. In particular, we study the asymptotic behavior of the path integral in the semi-classical limit. First, we compare the stationary phase equations in the classical limit for three different non-commutative structures corresponding to the symmetric, Duflo and Freidel–Livine–Majid quantization maps. We find that in order to unambiguously recover discrete geometric constraints for non-commutative metric boundary data through the stationary phase method, the deformation structure of the phase space must be accounted for in the variational calculus. When this is understood, our results demonstrate that the non-commutative metric representation facilitates a convenient semi-classical analysis of the Ponzano–Regge model, which yields as the dominant contribution to the amplitude the cosine of the Regge action in agreement with previous studies. We also consider the asymptotics of the ${\rm SU}(2)$ $6j$-symbol using the non-commutative phase space path integral for the Ponzano–Regge model, and explain the connection of our results to the previous asymptotic results in terms of coherent states.
Keywords: Ponzano–Regge model; non-commutative representation; asymptotic analysis.
@article{SIGMA_2014_10_a66,
     author = {Daniele Oriti and Matti Raasakka},
     title = {Asymptotic {Analysis} of the {Ponzano{\textendash}Regge} {Model} with {Non-Commutative} {Metric} {Boundary} {Data}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a66/}
}
TY  - JOUR
AU  - Daniele Oriti
AU  - Matti Raasakka
TI  - Asymptotic Analysis of the Ponzano–Regge Model with Non-Commutative Metric Boundary Data
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a66/
LA  - en
ID  - SIGMA_2014_10_a66
ER  - 
%0 Journal Article
%A Daniele Oriti
%A Matti Raasakka
%T Asymptotic Analysis of the Ponzano–Regge Model with Non-Commutative Metric Boundary Data
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a66/
%G en
%F SIGMA_2014_10_a66
Daniele Oriti; Matti Raasakka. Asymptotic Analysis of the Ponzano–Regge Model with Non-Commutative Metric Boundary Data. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a66/

[1] Alexandrov S., Geiller M., Noui K., “Spin foams and canonical quantization”, SIGMA, 8 (2012), 055, 79 pp., arXiv: 1112.1961 | DOI | MR | Zbl

[2] Baez J. C., “An introduction to spin foam models of {$BF$} theory and quantum gravity”, Geometry and Quantum Physics ({S}chladming, 1999), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 25–93, arXiv: gr-qc/9905087 | DOI | MR

[3] Bahr B., Dittrich B., “({B}roken) gauge symmetries and constraints in {R}egge calculus”, Classical Quantum Gravity, 26 (2009), 225011, 34 pp., arXiv: 0905.1670 | DOI | MR | Zbl

[4] Baratin A., Dittrich B., Oriti D., Tambornino J., “Non-commutative flux representation for loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 175011, 19 pp., arXiv: 1004.3450 | DOI | MR | Zbl

[5] Baratin A., Girelli F., Oriti D., “Diffeomorphisms in group field theories”, Phys. Rev. D, 83 (2011), 104051, 22 pp., arXiv: 1101.0590 | DOI

[6] Baratin A., Oriti D., “Group field theory with noncommutative metric variables”, Phys. Rev. Lett., 105 (2010), 221302, 4 pp., arXiv: 1002.4723 | DOI | MR

[7] Baratin A., Oriti D., “Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett–Crane model”, New J. Phys., 13 (2011), 125011, 28 pp., arXiv: 1108.1178 | DOI

[8] Baratin A., Oriti D., “Group field theory and simplicial gravity path integrals: a model for Holst–Plebański gravity”, Phys. Rev. D, 85 (2012), 044003, 15 pp., arXiv: 1111.5842 | DOI

[9] Barrett J. W., Crane L., “Relativistic spin networks and quantum gravity”, J. Math. Phys., 39 (1998), 3296–3302, arXiv: gr-qc/9709028 | DOI | MR | Zbl

[10] Barrett J. W., Dowdall R. J., Fairbairn W. J., Hellmann F., Pereira R., “Lorentzian spin foam amplitudes: graphical calculus and asymptotics”, Classical Quantum Gravity, 27 (2010), 165009, 34 pp., arXiv: 0907.2440 | DOI | MR | Zbl

[11] Barrett J. W., Naish-Guzman I., “The Ponzano–Regge model”, Classical Quantum Gravity, 26 (2011), 155014, 48 pp., arXiv: 0803.3319 | DOI

[12] Boulatov D. V., “A model of three-dimensional lattice gravity”, Modern Phys. Lett. A, 7 (1992), 1629–1646, arXiv: hep-th/9202074 | DOI | MR | Zbl

[13] Caselle M., D'Adda A., Magnea L., “Regge calculus as a local theory of the {P}oincaré group”, Phys. Lett. B, 232 (1989), 457–461 | DOI | MR

[14] Chaichian M., Demichev A., Path integrals in physics, v. I, Series in Mathematical and Computational Physics, Stochastic processes and quantum mechanics, Institute of Physics Publishing, Bristol, 2001 | MR | Zbl

[15] Conrady F., Freidel L., “Semiclassical limit of 4-dimensional spin foam models”, Phys. Rev. D, 78 (2008), 104023, 18 pp., arXiv: 0809.2280 | DOI | MR

[16] Dittrich B., Guedes C., Oriti D., “On the space of generalized fluxes for loop quantum gravity”, Classical Quantum Gravity, 30 (2013), 055008, 24 pp., arXiv: 1205.6166 | DOI | MR | Zbl

[17] Dowdall R. J., Gomes H., Hellmann F., “Asymptotic analysis of the {P}onzano-{R}egge model for handlebodies”, J. Phys. A: Math. Theor., 43 (2010), 115203, 27 pp., arXiv: 0909.2027 | DOI | MR | Zbl

[18] Dupuis M., Girelli F., Livine E., “Spinors and {V}oros star-product for group field theory: first contact”, Phys. Rev. D, 86 (2012), 105034, 18 pp., arXiv: 1107.5693 | DOI

[19] Dupuis M., Livine E. R., “Holomorphic simplicity constraints for 4{D} spinfoam models”, Classical Quantum Gravity, 28 (2011), 215022, 32 pp., arXiv: 1104.3683 | DOI | MR | Zbl

[20] Engle J., Livine E., Pereira R., Rovelli C., “L{QG} vertex with finite {I}mmirzi parameter”, Nuclear Phys. B, 799 (2008), 136–149, arXiv: 0711.0146 | DOI | MR | Zbl

[21] Engle J., Pereira R., Rovelli C., “Loop-quantum-gravity vertex amplitude”, Phys. Rev. Lett., 99 (2007), 161301, 4 pp., arXiv: 0705.2388 | DOI | MR | Zbl

[22] Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783, arXiv: hep-th/0505016 | DOI | MR | Zbl

[23] Freidel L., Krasnov K., “A new spin foam model for 4{D} gravity”, Classical Quantum Gravity, 25 (2008), 125018, 36 pp., arXiv: 0708.1595 | DOI | MR | Zbl

[24] Freidel L., Livine E. R., “3{D} quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp., arXiv: hep-th/0512113 | DOI | MR | Zbl

[25] Freidel L., Majid S., “Noncommutative harmonic analysis, sampling theory and the {D}uflo map in {$2+1$} quantum gravity”, Classical Quantum Gravity, 25 (2008), 045006, 37 pp., arXiv: hep-th/0601004 | DOI | MR | Zbl

[26] Goldman W. M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225 | DOI | MR | Zbl

[27] Guedes C., Oriti D., Raasakka M., “Quantization maps, algebra representation, and non-commutative {F}ourier transform for {L}ie groups”, J. Math. Phys., 54 (2013), 083508, 31 pp., arXiv: 1301.7750 | DOI | MR | Zbl

[28] Han M., “On spinfoam models in large spin regime”, Classical Quantum Gravity, 31 (2013), 015004, 21 pp., arXiv: 1304.5627 | DOI

[29] Han M., “Semiclassical analysis of spinfoam model with a small {B}arbero–{I}mmirzi parameter”, Phys. Rev. D, 88 (2013), 044051, 13 pp., arXiv: 1304.5628 | DOI

[30] Han M., Krajewski T., “Path integral representation of {L}orentzian spinfoam model, asymptotics and simplicial geometries”, Classical Quantum Gravity, 31 (2014), 015009, 34 pp., arXiv: 1304.5626 | DOI | MR | Zbl

[31] Han M., Zhang M., “Asymptotics of the spin foam amplitude on simplicial manifold: {E}uclidean theory”, Classical Quantum Gravity, 29 (2012), 165004, 40 pp., arXiv: 1109.0500 | DOI | MR | Zbl

[32] Han M., Zhang M., “Asymptotics of spinfoam amplitude on simplicial manifold: {L}orentzian theory”, Classical Quantum Gravity, 30 (2013), 165012, 57 pp., arXiv: 1109.0499 | DOI | MR | Zbl

[33] Hellmann F., Kamiński W., Geometric asymptotics for spin foam lattice gauge gravity on arbitrary triangulations, arXiv: 1210.5276

[34] Hellmann F., Kamiński W., “Holonomy spin foam models: asymptotic geometry of the partition function”, J. High Energy Phys., 2013:10 (2013), 165, 63 pp., arXiv: 1307.1679 | DOI

[35] Joung E., Mourad J., Noui K., “Three dimensional quantum geometry and deformed symmetry”, J. Math. Phys., 50 (2009), 052503, 29 pp., arXiv: 0806.4121 | DOI | MR | Zbl

[36] Kamiński W., Steinhaus S., “Coherent states, {$6j$} symbols and properties of the next to leading order asymptotic expansions”, J. Math. Phys., 54 (2013), 121703, 58 pp., arXiv: 1307.5432 | DOI | MR | Zbl

[37] Kawamoto N., Nielsen H. B., “Lattice gauge gravity”, Phys. Rev. D, 43 (1991), 1150–1156 | DOI | MR

[38] Magliaro E., Perini C., “Regge gravity from spinfoams”, Internat. J. Modern Phys. D, 22 (2013), 1350001, 21 pp., arXiv: 1105.0216 | DOI | MR | Zbl

[39] Majid S., Schroers B. J., “{$q$}-deformation and semidualization in 3{D} quantum gravity”, J. Phys. A: Math. Gen., 42 (2009), 425402, 40 pp., arXiv: 0806.2587 | DOI | MR | Zbl

[40] Mizoguchi S., Tada T., “Three-dimensional gravity from the {T}uraev–{V}iro invariant”, Phys. Rev. Lett., 68 (1992), 1795–1798, arXiv: hep-th/9110057 | DOI | MR | Zbl

[41] Noui K., Perez A., “Three-dimensional loop quantum gravity: physical scalar product and spin-foam models”, Classical Quantum Gravity, 22 (2005), 1739–1761, arXiv: gr-qc/0402110 | DOI | MR | Zbl

[42] Noui K., Perez A., Pranzetti D., “Canonical quantization of non-commutative holonomies in {$2+1$} loop quantum gravity”, J. High Energy Phys., 2011:10 (2011), 036, 21 pp., arXiv: 1105.0439 | DOI | MR

[43] Noui K., Perez A., Pranzetti D., “Non-commutative holonomies in $2+1$ LQG and Kauffman's brackets”, J. Phys. Conf. Ser., 360 (2012), 012040, 4 pp., arXiv: 1112.1825 | DOI

[44] Oriti D., “The microscopic dynamics of quantum space as a group field theory”, Foundations of Space and Time: Reflections on Quantum Gravity, eds. J. Murugan, A. Weltman, G. Ellis, Cambridge University Press, Cambridge, 2012, 257–320, arXiv: 1110.5606 | DOI | MR | Zbl

[45] Oriti D., Raasakka M., “Quantum mechanics on {${\rm SO}(3)$} via non-commutative dual variables”, Phys. Rev. D, 84 (2011), 025003, 18 pp., arXiv: 1103.2098 | DOI

[46] Perelomov A., Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986 | DOI | MR | Zbl

[47] Perez A., “The new spin foam models and quantum gravity”, Papers Phys., 4 (2012), 040004, 37 pp., arXiv: 1205.0911 | DOI | MR

[48] Perez A., “The spin foam approach to quantum gravity”, Living Rev. Relativ., 16 (2013), 3, 128 pp., arXiv: 1205.2019 | DOI

[49] Ponzano G., Regge T., “Semiclassical limit of Racah coefficients”, Spectroscopy and Group Theoretical Methods in Physics, ed. F. Block, North Holland, Amsterdam, 1968, 1–58

[50] Pranzetti D., “Turaev–Viro amplitudes from $2+1$ loop quantum gravity”, Phys. Rev. D, 89 (2014), 084058, 14 pp., arXiv: 1402.2384 | DOI

[51] Regge T., Williams R. M., “Discrete structures in gravity,”, J. Math. Phys., 41 (2000), 3964–3984, arXiv: gr-qc/0012035 | DOI | MR | Zbl

[52] Reisenberger M. P., Rovelli C., ““{S}um over surfaces” form of loop quantum gravity”, Phys. Rev. D, 56 (1997), 3490–3508, arXiv: gr-qc/9612035 | DOI | MR

[53] Reshetikhin N., Turaev V. G., “Invariants of {$3$}-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 | DOI | MR | Zbl

[54] Rovelli C., “Basis of the {P}onzano–{R}egge–{T}uraev–{V}iro–{O}oguri quantum-gravity model is the loop representation basis”, Phys. Rev. D, 48 (1993), 2702–2707, arXiv: hep-th/9304164 | DOI | MR

[55] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[56] Sahlmann H., Thiemann T., “Chern–{S}imons theory, {S}tokes' theorem, and the {D}uflo map”, J. Geom. Phys., 61 (2011), 1104–1121, arXiv: 1101.1690 | DOI | MR | Zbl

[57] Sahlmann H., Thiemann T., “Chern–Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map”, Phys. Rev. Lett., 108 (2012), 111303, 5 pp., arXiv: 1109.5793 | DOI | MR

[58] Schroers B. J., “Combinatorial quantization of {E}uclidean gravity in three dimensions”, Quantization of Singular Symplectic Quotients, Progr. Math., 198, eds. N. Landsman, M. Pflaum, M. Schlichenmaier, Birkhäuser, Basel, 2001, 307–327, arXiv: math.QA/0006228 | MR | Zbl

[59] Sengupta A. N., “The volume measure for flat connections as limit of the {Y}ang–{M}ills measure”, J. Geom. Phys., 47 (2003), 398–426 | DOI | MR | Zbl

[60] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl

[61] Turaev V. G., Viro O. Y., “State sum invariants of {$3$}-manifolds and quantum {$6j$}-symbols”, Topology, 31 (1992), 865–902 | DOI | MR | Zbl

[62] Witten E., “Quantum field theory and the {J}ones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl

[63] Witten E., “On quantum gauge theories in two dimensions”, Comm. Math. Phys., 141 (1991), 153–209 | DOI | MR | Zbl