Non-Point Invertible Transformations and Integrability of Partial Difference Equations
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is devoted to the partial difference quad-graph equations that can be represented in the form $\varphi (u(i+1,j),u(i+1,j+1))=\psi (u(i,j),u(i,j+1))$, where the map $(w,z) \rightarrow (\varphi(w,z),\psi(w,z))$ is injective. The transformation $v(i,j)=\varphi (u(i,j),u(i,j+1))$ relates any of such equations to a quad-graph equation. It is proved that this transformation maps Darboux integrable equations of the above form into Darboux integrable equations again and decreases the orders of the transformed integrals by one in the $j$-direction. As an application of this fact, the Darboux integrable equations possessing integrals of the second order in the $j$-direction are described under an additional assumption. The transformation also maps symmetries of the original equations into symmetries of the transformed equations (i.e.preserves the integrability in the sense of the symmetry approach) and acts as a difference substitution for symmetries of a special form. The latter fact allows us to derive necessary conditions of Darboux integrability for the equations defined in the first sentence of the abstract.
Keywords: quad-graph equation; non-point transformation; Darboux integrability; higher symmetry; difference substitution; discrete Liouville equation.
@article{SIGMA_2014_10_a65,
     author = {Sergey Ya. Startsev},
     title = {Non-Point {Invertible} {Transformations} and {Integrability} of {Partial} {Difference} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a65/}
}
TY  - JOUR
AU  - Sergey Ya. Startsev
TI  - Non-Point Invertible Transformations and Integrability of Partial Difference Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a65/
LA  - en
ID  - SIGMA_2014_10_a65
ER  - 
%0 Journal Article
%A Sergey Ya. Startsev
%T Non-Point Invertible Transformations and Integrability of Partial Difference Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a65/
%G en
%F SIGMA_2014_10_a65
Sergey Ya. Startsev. Non-Point Invertible Transformations and Integrability of Partial Difference Equations. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a65/

[1] Adler V. E., Bobenko A. I., Suris Yu. B., “Discrete nonlinear hyperbolic equations: classification of integrable cases”, Funct. Anal. Appl., 43 (2009), 3–17, arXiv: 0705.1663 | DOI | MR | Zbl

[2] Adler V. E., Startsev S. Ya., “On discrete analogues of the {L}iouville equation”, Theoret. and Math. Phys., 121 (1999), 1484–1495, arXiv: solv-int/9902016 | DOI | MR | Zbl

[3] Atkinson J., Nieszporski M., “Multi-quadratic quad equations: integrable cases from a factorized-discriminant hypothesis”, Int. Math. Res. Not. (to appear) , arXiv: 1204.0638 | DOI

[4] Calogero F., Why are certain nonlinear {PDE}s both widely applicable and integrable?, What Is Integrability?, Springer Ser. Nonlinear Dynam., ed. V. E. Zakharov, Springer, Berlin, 1991, 1–62 | DOI | MR | Zbl

[5] Garifullin R. N., Yamilov R. I., “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45 (2012), 345205, 23 pp., arXiv: 1203.4369 | DOI | MR | Zbl

[6] Goursat E., “Recherches sur quelques équations aux dérivées partielles du second ordre”, Ann. Fac. Sci. Toulouse Sci. Sér. 2, 1 (1899), 31–78 | DOI | MR | Zbl

[7] Habibullin I., Zheltukhina N., Sakieva A., “Discretization of hyperbolic type {D}arboux integrable equations preserving integrability”, J. Math. Phys., 52 (2011), 093507, 12 pp., arXiv: 1102.1236 | DOI | MR | Zbl

[8] Hirota R., “Discrete two-dimensional {T}oda molecule equation”, J. Phys. Soc. Japan, 56 (1987), 4285–4288 | DOI | MR

[9] Levi D., Scimiterna C., “Linearizability of nonlinear equations on a quad-graph by a point, two points and generalized {H}opf–{C}ole transformations”, SIGMA, 7 (2011), 079, 24 pp., arXiv: 1108.3648 | DOI | MR | Zbl

[10] Levi D., Yamilov R. I., “The generalized symmetry method for discrete equations”, J. Phys. A: Math. Theor., 42 (2009), 454012, 18 pp., arXiv: 0902.4421 | DOI | MR | Zbl

[11] Mikhailov A. V., Wang J. P., Xenitidis P., “Recursion operators, conservation laws and integrability conditions for difference equations”, Theoret. and Math. Phys., 167 (2011), 421–443, arXiv: 1004.5346 | DOI | MR | Zbl

[12] Startsev S. Ya., “On non-point invertible transformations of difference and differential-difference equations”, SIGMA, 6 (2010), 092, 14 pp., arXiv: 1010.0361 | DOI | MR | Zbl

[13] Startsev S. Ya., “Darboux integrable differential-difference equations admitting a first-order integral”, Ufa Math. J., 4:3 (2012), 159–173 http://matem.anrb.ru/en/article?art_id=182 | MR

[14] Startsev S. Y., “Darboux integrable discrete equations possessing an autonomous first-order integral”, J. Phys. A: Math. Theor., 47 (2014), 105204, 16 pp., arXiv: 1310.2282 | DOI | MR | Zbl

[15] Tremblay S., Grammaticos B., Ramani A., “Integrable lattice equations and their growth properties”, Phys. Lett. A, 278 (2001), 319–324, arXiv: 0709.3095 | DOI | MR | Zbl

[16] Yamilov R. I., “Invertible substitutions of variables generated by {B}äcklund transformations”, Theoret. and Math. Phys., 85 (1990), 1269–1275 | DOI | MR | Zbl

[17] Yamilov R. I., “Construction scheme for discrete {M}iura transformations”, J. Phys. A: Math. Gen., 27 (1994), 6839–6851 | DOI | MR | Zbl

[18] Zhiber A. V., Sokolov V. V., “Exactly integrable hyperbolic equations of {L}iouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | MR | Zbl