@article{SIGMA_2014_10_a65,
author = {Sergey Ya. Startsev},
title = {Non-Point {Invertible} {Transformations} and {Integrability} of {Partial} {Difference} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a65/}
}
TY - JOUR AU - Sergey Ya. Startsev TI - Non-Point Invertible Transformations and Integrability of Partial Difference Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a65/ LA - en ID - SIGMA_2014_10_a65 ER -
Sergey Ya. Startsev. Non-Point Invertible Transformations and Integrability of Partial Difference Equations. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a65/
[1] Adler V. E., Bobenko A. I., Suris Yu. B., “Discrete nonlinear hyperbolic equations: classification of integrable cases”, Funct. Anal. Appl., 43 (2009), 3–17, arXiv: 0705.1663 | DOI | MR | Zbl
[2] Adler V. E., Startsev S. Ya., “On discrete analogues of the {L}iouville equation”, Theoret. and Math. Phys., 121 (1999), 1484–1495, arXiv: solv-int/9902016 | DOI | MR | Zbl
[3] Atkinson J., Nieszporski M., “Multi-quadratic quad equations: integrable cases from a factorized-discriminant hypothesis”, Int. Math. Res. Not. (to appear) , arXiv: 1204.0638 | DOI
[4] Calogero F., Why are certain nonlinear {PDE}s both widely applicable and integrable?, What Is Integrability?, Springer Ser. Nonlinear Dynam., ed. V. E. Zakharov, Springer, Berlin, 1991, 1–62 | DOI | MR | Zbl
[5] Garifullin R. N., Yamilov R. I., “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45 (2012), 345205, 23 pp., arXiv: 1203.4369 | DOI | MR | Zbl
[6] Goursat E., “Recherches sur quelques équations aux dérivées partielles du second ordre”, Ann. Fac. Sci. Toulouse Sci. Sér. 2, 1 (1899), 31–78 | DOI | MR | Zbl
[7] Habibullin I., Zheltukhina N., Sakieva A., “Discretization of hyperbolic type {D}arboux integrable equations preserving integrability”, J. Math. Phys., 52 (2011), 093507, 12 pp., arXiv: 1102.1236 | DOI | MR | Zbl
[8] Hirota R., “Discrete two-dimensional {T}oda molecule equation”, J. Phys. Soc. Japan, 56 (1987), 4285–4288 | DOI | MR
[9] Levi D., Scimiterna C., “Linearizability of nonlinear equations on a quad-graph by a point, two points and generalized {H}opf–{C}ole transformations”, SIGMA, 7 (2011), 079, 24 pp., arXiv: 1108.3648 | DOI | MR | Zbl
[10] Levi D., Yamilov R. I., “The generalized symmetry method for discrete equations”, J. Phys. A: Math. Theor., 42 (2009), 454012, 18 pp., arXiv: 0902.4421 | DOI | MR | Zbl
[11] Mikhailov A. V., Wang J. P., Xenitidis P., “Recursion operators, conservation laws and integrability conditions for difference equations”, Theoret. and Math. Phys., 167 (2011), 421–443, arXiv: 1004.5346 | DOI | MR | Zbl
[12] Startsev S. Ya., “On non-point invertible transformations of difference and differential-difference equations”, SIGMA, 6 (2010), 092, 14 pp., arXiv: 1010.0361 | DOI | MR | Zbl
[13] Startsev S. Ya., “Darboux integrable differential-difference equations admitting a first-order integral”, Ufa Math. J., 4:3 (2012), 159–173 http://matem.anrb.ru/en/article?art_id=182 | MR
[14] Startsev S. Y., “Darboux integrable discrete equations possessing an autonomous first-order integral”, J. Phys. A: Math. Theor., 47 (2014), 105204, 16 pp., arXiv: 1310.2282 | DOI | MR | Zbl
[15] Tremblay S., Grammaticos B., Ramani A., “Integrable lattice equations and their growth properties”, Phys. Lett. A, 278 (2001), 319–324, arXiv: 0709.3095 | DOI | MR | Zbl
[16] Yamilov R. I., “Invertible substitutions of variables generated by {B}äcklund transformations”, Theoret. and Math. Phys., 85 (1990), 1269–1275 | DOI | MR | Zbl
[17] Yamilov R. I., “Construction scheme for discrete {M}iura transformations”, J. Phys. A: Math. Gen., 27 (1994), 6839–6851 | DOI | MR | Zbl
[18] Zhiber A. V., Sokolov V. V., “Exactly integrable hyperbolic equations of {L}iouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | MR | Zbl