Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a perfect Lie algebra $\mathfrak{h}$ we classify all Lie algebras containing $\mathfrak{h}$ as a subalgebra of codimension $1$. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product $\mathfrak{h} \ltimes (k^* \times \mathrm{Aut}_{\mathrm{Lie}} (\mathfrak{h}))$. In the non-perfect case the classification of these Lie algebras is a difficult task. Let $\mathfrak{l} (2n+1, k)$ be the Lie algebra with the bracket $[E_i, G] = E_i$, $[G, F_i] = F_i$, for all $i = 1, \dots, n$. We explicitly describe all Lie algebras containing $\mathfrak{l} (2n+1, k)$ as a subalgebra of codimension $1$ by computing all possible bicrossed products $k \bowtie \mathfrak{l} (2n+1, k)$. They are parameterized by a set of matrices ${\rm M}_n (k)^4 \times k^{2n+2}$ which are explicitly determined. Several matched pair deformations of $\mathfrak{l} (2n+1, k)$ are described in order to compute the factorization index of some extensions of the type $k \subset k \bowtie \mathfrak{l} (2n+1, k)$. We provide an example of such extension having an infinite factorization index.
Keywords: matched pairs of Lie algebras; bicrossed products; factorization index.
@article{SIGMA_2014_10_a64,
     author = {Ana-Loredana Agore and Gigel Militaru},
     title = {Bicrossed {Products,} {Matched} {Pair} {Deformations} and the {Factorization} {Index} for {Lie} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a64/}
}
TY  - JOUR
AU  - Ana-Loredana Agore
AU  - Gigel Militaru
TI  - Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a64/
LA  - en
ID  - SIGMA_2014_10_a64
ER  - 
%0 Journal Article
%A Ana-Loredana Agore
%A Gigel Militaru
%T Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a64/
%G en
%F SIGMA_2014_10_a64
Ana-Loredana Agore; Gigel Militaru. Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a64/

[1] Agore A. L., Bontea C. G., Militaru G., “Classifying bicrossed products of {H}opf algebras”, Algebr. Represent. Theory, 17 (2014), 227–264, arXiv: 1205.6110 | DOI | MR

[2] Agore A. L., Militaru G., Classifying complements for groups. Applications, arXiv: 1204.1805

[3] Agore A. L., Militaru G., “Classifying complements for {H}opf algebras and {L}ie algebras”, J. Algebra, 391 (2013), 193–208, arXiv: 1205.6564 | DOI | MR | Zbl

[4] Agore A. L., Militaru G., “Extending structures for {L}ie algebras”, Monatsh. Math., 174 (2014), 169–193, arXiv: 1301.5442 | DOI | MR

[5] Andrada A., Barberis M. L., Dotti I. G., Ovando G. P., “Product structures on four dimensional solvable {L}ie algebras”, Homology Homotopy Appl., 7 (2005), 9–37, arXiv: math.RA/0402234 | DOI | MR | Zbl

[6] Andrada A., Salamon S., “Complex product structures on {L}ie algebras”, Forum Math., 17 (2005), 261–295, arXiv: math.DG/0305102 | DOI | MR | Zbl

[7] Benayadi S., “Structure of perfect {L}ie algebras without center and outer derivations”, Ann. Fac. Sci. Toulouse Math., 5 (1996) | DOI | MR | Zbl

[8] de Graaf W. A., “Classification of solvable {L}ie algebras”, Experiment. Math., 14 (2005), 15–25, arXiv: math.RA/0404071 | DOI | MR | Zbl

[9] Erdmann K., Wildon M. J., Introduction to {L}ie algebras, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2006 | MR | Zbl

[10] Figueroa-O'Farrill J. M., Stanciu S., “On the structure of symmetric self-dual {L}ie algebras”, J. Math. Phys., 37 (1996), 4121–4134, arXiv: hep-th/9506152 | DOI | MR

[11] Fisher D. J., Gray R. J., Hydon P. E., “Automorphisms of real {L}ie algebras of dimension five or less”, J. Phys. A: Math. Theor., 46 (2013), 225204, 18 pp., arXiv: 1303.3376 | DOI | MR | Zbl

[12] Hofmann K. H., “Lie algebras with subalgebras of co-dimension one”, Illinois J. Math., 9 (1965), 636–643 | MR | Zbl

[13] Humphreys J. E., Introduction to {L}ie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York–Berlin, 1972 | DOI | MR | Zbl

[14] Jiang C. P., Meng D. J., Zhang S. Q., “Some complete {L}ie algebras”, J. Algebra, 186 (1996), 807–817 | DOI | MR | Zbl

[15] Lu J. H., Weinstein A., “Poisson {L}ie groups, dressing transformations, and {B}ruhat decompositions”, J. Differential Geom., 31 (1990), 501–526 | MR | Zbl

[16] Majid S., “Physics for algebraists: noncommutative and noncocommutative {H}opf algebras by a bicrossproduct construction”, J. Algebra, 130 (1990), 17–64 | DOI | MR | Zbl

[17] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[18] Medina A., Revoy P., “Algèbres de {L}ie et produit scalaire invariant”, Ann. Sci. École Norm. Sup., 18 (1985), 553–561 | MR | Zbl

[19] Michor P. W., “Knit products of graded {L}ie algebras and groups”, Rend. Circ. Mat. Palermo (2) Suppl., 22 (1990), 171–175, arXiv: math.GR/9204220 | MR | Zbl

[20] Pelc O., “A new family of solvable self-dual {L}ie algebras”, J. Math. Phys., 38 (1997), 3832–3840, arXiv: physics/9709009 | DOI | MR | Zbl

[21] Popovych R. O., Boyko V. M., Nesterenko M. O., Lutfullin M. W., “Realizations of real low-dimensional {L}ie algebras”, J. Phys. A: Math. Gen., 36 (2003), 7337–7360, arXiv: math-ph/0301029 | DOI | MR | Zbl

[22] Su Y., Zhu L., “Derivation algebras of centerless perfect {L}ie algebras are complete”, J. Algebra, 285 (2005), 508–515, arXiv: math.QA/0511550 | DOI | MR | Zbl