@article{SIGMA_2014_10_a63,
author = {Marc A. Rieffel},
title = {Non-Commutative {Resistance} {Networks}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a63/}
}
Marc A. Rieffel. Non-Commutative Resistance Networks. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a63/
[1] Albeverio S., Høegh-Krohn R., “Dirichlet forms and {M}arkov semigroups on {$C^*$}-algebras”, Comm. Math. Phys., 56 (1977), 173–187 | DOI | MR | Zbl
[2] Beggs E. J., Majid S., “{$*$}-compatible connections in noncommutative {R}iemannian geometry”, J. Geom. Phys., 61 (2011), 95–124, arXiv: 0904.0539 | DOI | MR | Zbl
[3] Beurling A., Deny J., “Espaces de {D}irichlet. {I}: {L}e cas élémentaire”, Acta Math., 99 (1958), 203–224 | DOI | MR | Zbl
[4] Blackadar B., Operator algebras. Theory of $C^{*}$-algebras and von Neumann algebras, Encyclopaedia of Mathematical Sciences, 122, Springer-Verlag, Berlin, 2006 | MR | Zbl
[5] Cipriani F., “Dirichlet forms and {M}arkovian semigroups on standard forms of von {N}eumann algebras”, J. Funct. Anal., 147 (1997), 259–300 | DOI | MR | Zbl
[6] Cipriani F., “Dirichlet forms on noncommutative spaces”, Quantum Potential Theory, Lecture Notes in Math., 1954, Springer, 2008, 161–276 | DOI | MR | Zbl
[7] Cipriani F., Sauvageot J. L., “Derivations as square roots of {D}irichlet forms”, J. Funct. Anal., 201 (2003), 78–120 | DOI | MR | Zbl
[8] Connes A., Noncommutative geometry, Academic Press, Inc., 1994 | MR | Zbl
[9] Davies E. B., “Analysis on graphs and noncommutative geometry”, J. Funct. Anal., 111 (1993), 398–430 | DOI | MR | Zbl
[10] Davies E. B., Lindsay J. M., “Noncommutative symmetric {M}arkov semigroups”, Math. Z., 210 (1992), 379–411 | DOI | MR | Zbl
[11] Evans D. E., “Conditionally completely positive maps on operator algebras”, Quart. J. Math. Oxford Ser. (2), 28 (1977), 271–283 | DOI | MR | Zbl
[12] Fröhlich J., Grandjean O., Recknagel A., “Supersymmetric quantum theory and non-commutative geometry”, Comm. Math. Phys., 203 (1999), 119–184, arXiv: math-ph/9807006 | DOI | MR
[13] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001 | DOI | MR | Zbl
[14] Halbout G., Tang X., “Dunkl operator and quantization of {${\mathbb Z}_2$}-singularity”, J. Reine Angew. Math., 673 (2012), 209–235, arXiv: 0908.4301 | DOI | MR | Zbl
[15] Ivanciuc O., “{QSAR} and {QSPR} molecular descriptors computed from the resistance distance and electrical conductance matrices”, Models Chem., 137 (2000), 607–631
[16] Jorgensen P. E. T., Pearse E. P. J., Operator theory of electrical resistance networks, arXiv: 0806.3881
[17] Jorgensen P. E. T., Pearse E. P. J., “A {H}ilbert space approach to effective resistance metric”, Complex Anal. Oper. Theory, 4 (2010), 975–1013, arXiv: 0906.2535 | DOI | MR | Zbl
[18] Junge M., Mei T., Parcet J., “An invitation to harmonic analysis associated with semigroups of operators”, Harmonic Analysis and PDE's, Proceedings of 9th {I}nternational {C}onference (to appear) , arXiv: 1304.4922
[19] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. II, Graduate Studies in Mathematics, 16, Advanced theory, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[20] Kaliszewski S., Patani N., Quigg J., “Characterizing graph {$C^*$}-correspondences”, Houston J. Math., 38 (2012), 751–759, arXiv: 0906.3311 | MR | Zbl
[21] Kigami J., Analysis on fractals, Cambridge Tracts in Mathematics, 143, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl
[22] Klein D. J., Palacios J. L., Randic M., Trinajstic N., “Random walks and chemical graph theory”, J. Chem Inf. Comput. Sci., 44 (2004), 1521–1525 | DOI
[23] Klein D. J., Randić M., “Resistance distance”, J. Math. Chem., 12 (1993), 81–95 | DOI | MR
[24] Lindblad G., “On the generators of quantum dynamical semigroups”, Comm. Math. Phys., 48 (1976), 119–130 | DOI | MR | Zbl
[25] Majid S., “Noncommutative {R}iemannian geometry on graphs”, J. Geom. Phys., 69 (2013), 74–93, arXiv: 1011.5898 | DOI | MR | Zbl
[26] McRae B. H., “Isolation by resistance”, Evolution, 60 (2006), 1551–1561 | DOI
[27] Peterson J., “A 1-cohomology characterization of property ({T}) in von {N}eumann algebras”, Pacific J. Math., 243 (2009), 181–199, arXiv: math.OA/0409527 | DOI | MR | Zbl
[28] Preskill J., Lecture notes on quantum computation, , 1997 http://www.theory.caltech.edu/people/preskill/ph229/notes/chap3.pdf
[29] Raeburn I., Williams D. P., Morita equivalence and continuous-trace {$C^*$}-algebras, Mathematical Surveys and Monographs, 60, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl
[30] Rieffel M. A., “Induced representations of {$C^{\ast}$}-algebras”, Adv. Math., 13 (1974), 176–257 | DOI | MR | Zbl
[31] Rieffel M. A., “Metrics on states from actions of compact groups”, Doc. Math., 3 (1998), 215–229, arXiv: math.OA/9807084 | MR
[32] Rieffel M. A., “Metrics on state spaces”, Doc. Math., 4 (1999), 559–600, arXiv: math.OA/9906151 | MR | Zbl
[33] Rieffel M. A., “Matrix algebras converge to the sphere for quantum {G}romov–{H}ausdorff distance”, Mem. Amer. Math. Soc., 168, 2004, 67–91, arXiv: math.OA/0108005 | DOI | MR
[34] Rieffel M. A., “Leibniz seminorms for “matrix algebras converge to the sphere””, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 543–578, arXiv: 0707.3229 | MR | Zbl
[35] Rieffel M. A., “Vector bundles and {G}romov–{H}ausdorff distance”, J. $K$-Theory, 5 (2010), 39–103, arXiv: math.MG/0608266 | DOI | MR | Zbl
[36] Rieffel M. A., “Standard deviation is a strongly {L}eibniz seminorm”, New York J. Math., 20 (2014), 35–56, arXiv: 1208.4072 | MR | Zbl
[37] Rosenberg J., “Levi–{C}ivita's theorem for noncommutative tori”, SIGMA, 9 (2013), 071, 9 pp., arXiv: 1307.3775 | DOI | MR | Zbl
[38] Ruan Z. J., “Subspaces of {$C^*$}-algebras”, J. Funct. Anal., 76 (1988), 217–230 | DOI | MR | Zbl
[39] Sauvageot J. L., “Tangent bimodule and locality for dissipative operators on {$C^*$}-algebras”, Quantum Probability and Applications, {IV} ({R}ome, 1987), Lecture Notes in Math., 1396, Springer, Berlin, 1989, 322–338 | DOI | MR
[40] Sauvageot J. L., “Quantum {D}irichlet forms, differential calculus and semigroups”, Quantum Probability and Applications, {V} ({H}eidelberg, 1988), Lecture Notes in Math., 1442, Springer, Berlin, 1990, 334–346 | DOI | MR
[41] Sinayskiy I., Petruccione F., “Efficiency of open quantum walk implementation of dissipative quantum computing algorithms”, Quantum Inf. Process., 11 (2012), 1301–1309, arXiv: 1401.6658 | DOI | MR | Zbl
[42] Takesaki M., Theory of operator algebras, v. I, Springer-Verlag, New York–Heidelberg, 1979 | MR
[43] Weaver N., Lipschitz algebras, World Sci. Publ. Co., Inc., River Edge, NJ, 1999 | DOI | MR | Zbl
[44] Wiseman H. M., Milburn G. J., Quantum measurement and control, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[45] Zhang H., Yang Y., “Resistance distance and {K}irchoff index in circulant graphs”, Int. J. Quantum Chem., 107 (2007), 330–339 | DOI
[46] Zhao B., One noncommutative differential calculus coming from the inner derivation, arXiv: math.OA/0611600