Non-Commutative Resistance Networks
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the setting of finite-dimensional $C^*$-algebras ${\mathcal A}$ we define what we call a Riemannian metric for ${\mathcal A}$, which when ${\mathcal A}$ is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation.
Keywords: resistance network; Riemannian metric; Dirichlet form; Markov; Leibniz seminorm; Laplace operator; resistance distance; standard deviation.
@article{SIGMA_2014_10_a63,
     author = {Marc A. Rieffel},
     title = {Non-Commutative {Resistance} {Networks}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a63/}
}
TY  - JOUR
AU  - Marc A. Rieffel
TI  - Non-Commutative Resistance Networks
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a63/
LA  - en
ID  - SIGMA_2014_10_a63
ER  - 
%0 Journal Article
%A Marc A. Rieffel
%T Non-Commutative Resistance Networks
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a63/
%G en
%F SIGMA_2014_10_a63
Marc A. Rieffel. Non-Commutative Resistance Networks. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a63/

[1] Albeverio S., Høegh-Krohn R., “Dirichlet forms and {M}arkov semigroups on {$C^*$}-algebras”, Comm. Math. Phys., 56 (1977), 173–187 | DOI | MR | Zbl

[2] Beggs E. J., Majid S., “{$*$}-compatible connections in noncommutative {R}iemannian geometry”, J. Geom. Phys., 61 (2011), 95–124, arXiv: 0904.0539 | DOI | MR | Zbl

[3] Beurling A., Deny J., “Espaces de {D}irichlet. {I}: {L}e cas élémentaire”, Acta Math., 99 (1958), 203–224 | DOI | MR | Zbl

[4] Blackadar B., Operator algebras. Theory of $C^{*}$-algebras and von Neumann algebras, Encyclopaedia of Mathematical Sciences, 122, Springer-Verlag, Berlin, 2006 | MR | Zbl

[5] Cipriani F., “Dirichlet forms and {M}arkovian semigroups on standard forms of von {N}eumann algebras”, J. Funct. Anal., 147 (1997), 259–300 | DOI | MR | Zbl

[6] Cipriani F., “Dirichlet forms on noncommutative spaces”, Quantum Potential Theory, Lecture Notes in Math., 1954, Springer, 2008, 161–276 | DOI | MR | Zbl

[7] Cipriani F., Sauvageot J. L., “Derivations as square roots of {D}irichlet forms”, J. Funct. Anal., 201 (2003), 78–120 | DOI | MR | Zbl

[8] Connes A., Noncommutative geometry, Academic Press, Inc., 1994 | MR | Zbl

[9] Davies E. B., “Analysis on graphs and noncommutative geometry”, J. Funct. Anal., 111 (1993), 398–430 | DOI | MR | Zbl

[10] Davies E. B., Lindsay J. M., “Noncommutative symmetric {M}arkov semigroups”, Math. Z., 210 (1992), 379–411 | DOI | MR | Zbl

[11] Evans D. E., “Conditionally completely positive maps on operator algebras”, Quart. J. Math. Oxford Ser. (2), 28 (1977), 271–283 | DOI | MR | Zbl

[12] Fröhlich J., Grandjean O., Recknagel A., “Supersymmetric quantum theory and non-commutative geometry”, Comm. Math. Phys., 203 (1999), 119–184, arXiv: math-ph/9807006 | DOI | MR

[13] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001 | DOI | MR | Zbl

[14] Halbout G., Tang X., “Dunkl operator and quantization of {${\mathbb Z}_2$}-singularity”, J. Reine Angew. Math., 673 (2012), 209–235, arXiv: 0908.4301 | DOI | MR | Zbl

[15] Ivanciuc O., “{QSAR} and {QSPR} molecular descriptors computed from the resistance distance and electrical conductance matrices”, Models Chem., 137 (2000), 607–631

[16] Jorgensen P. E. T., Pearse E. P. J., Operator theory of electrical resistance networks, arXiv: 0806.3881

[17] Jorgensen P. E. T., Pearse E. P. J., “A {H}ilbert space approach to effective resistance metric”, Complex Anal. Oper. Theory, 4 (2010), 975–1013, arXiv: 0906.2535 | DOI | MR | Zbl

[18] Junge M., Mei T., Parcet J., “An invitation to harmonic analysis associated with semigroups of operators”, Harmonic Analysis and PDE's, Proceedings of 9th {I}nternational {C}onference (to appear) , arXiv: 1304.4922

[19] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. II, Graduate Studies in Mathematics, 16, Advanced theory, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[20] Kaliszewski S., Patani N., Quigg J., “Characterizing graph {$C^*$}-correspondences”, Houston J. Math., 38 (2012), 751–759, arXiv: 0906.3311 | MR | Zbl

[21] Kigami J., Analysis on fractals, Cambridge Tracts in Mathematics, 143, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl

[22] Klein D. J., Palacios J. L., Randic M., Trinajstic N., “Random walks and chemical graph theory”, J. Chem Inf. Comput. Sci., 44 (2004), 1521–1525 | DOI

[23] Klein D. J., Randić M., “Resistance distance”, J. Math. Chem., 12 (1993), 81–95 | DOI | MR

[24] Lindblad G., “On the generators of quantum dynamical semigroups”, Comm. Math. Phys., 48 (1976), 119–130 | DOI | MR | Zbl

[25] Majid S., “Noncommutative {R}iemannian geometry on graphs”, J. Geom. Phys., 69 (2013), 74–93, arXiv: 1011.5898 | DOI | MR | Zbl

[26] McRae B. H., “Isolation by resistance”, Evolution, 60 (2006), 1551–1561 | DOI

[27] Peterson J., “A 1-cohomology characterization of property ({T}) in von {N}eumann algebras”, Pacific J. Math., 243 (2009), 181–199, arXiv: math.OA/0409527 | DOI | MR | Zbl

[28] Preskill J., Lecture notes on quantum computation, , 1997 http://www.theory.caltech.edu/people/preskill/ph229/notes/chap3.pdf

[29] Raeburn I., Williams D. P., Morita equivalence and continuous-trace {$C^*$}-algebras, Mathematical Surveys and Monographs, 60, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl

[30] Rieffel M. A., “Induced representations of {$C^{\ast}$}-algebras”, Adv. Math., 13 (1974), 176–257 | DOI | MR | Zbl

[31] Rieffel M. A., “Metrics on states from actions of compact groups”, Doc. Math., 3 (1998), 215–229, arXiv: math.OA/9807084 | MR

[32] Rieffel M. A., “Metrics on state spaces”, Doc. Math., 4 (1999), 559–600, arXiv: math.OA/9906151 | MR | Zbl

[33] Rieffel M. A., “Matrix algebras converge to the sphere for quantum {G}romov–{H}ausdorff distance”, Mem. Amer. Math. Soc., 168, 2004, 67–91, arXiv: math.OA/0108005 | DOI | MR

[34] Rieffel M. A., “Leibniz seminorms for “matrix algebras converge to the sphere””, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 543–578, arXiv: 0707.3229 | MR | Zbl

[35] Rieffel M. A., “Vector bundles and {G}romov–{H}ausdorff distance”, J. $K$-Theory, 5 (2010), 39–103, arXiv: math.MG/0608266 | DOI | MR | Zbl

[36] Rieffel M. A., “Standard deviation is a strongly {L}eibniz seminorm”, New York J. Math., 20 (2014), 35–56, arXiv: 1208.4072 | MR | Zbl

[37] Rosenberg J., “Levi–{C}ivita's theorem for noncommutative tori”, SIGMA, 9 (2013), 071, 9 pp., arXiv: 1307.3775 | DOI | MR | Zbl

[38] Ruan Z. J., “Subspaces of {$C^*$}-algebras”, J. Funct. Anal., 76 (1988), 217–230 | DOI | MR | Zbl

[39] Sauvageot J. L., “Tangent bimodule and locality for dissipative operators on {$C^*$}-algebras”, Quantum Probability and Applications, {IV} ({R}ome, 1987), Lecture Notes in Math., 1396, Springer, Berlin, 1989, 322–338 | DOI | MR

[40] Sauvageot J. L., “Quantum {D}irichlet forms, differential calculus and semigroups”, Quantum Probability and Applications, {V} ({H}eidelberg, 1988), Lecture Notes in Math., 1442, Springer, Berlin, 1990, 334–346 | DOI | MR

[41] Sinayskiy I., Petruccione F., “Efficiency of open quantum walk implementation of dissipative quantum computing algorithms”, Quantum Inf. Process., 11 (2012), 1301–1309, arXiv: 1401.6658 | DOI | MR | Zbl

[42] Takesaki M., Theory of operator algebras, v. I, Springer-Verlag, New York–Heidelberg, 1979 | MR

[43] Weaver N., Lipschitz algebras, World Sci. Publ. Co., Inc., River Edge, NJ, 1999 | DOI | MR | Zbl

[44] Wiseman H. M., Milburn G. J., Quantum measurement and control, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[45] Zhang H., Yang Y., “Resistance distance and {K}irchoff index in circulant graphs”, Int. J. Quantum Chem., 107 (2007), 330–339 | DOI

[46] Zhao B., One noncommutative differential calculus coming from the inner derivation, arXiv: math.OA/0611600