@article{SIGMA_2014_10_a62,
author = {Marija Dimitrijevi\'c and Larisa Jonke and Anna Pacho{\l}},
title = {Gauge {Theory} on {Twisted~}$\kappa${-Minkowski:} {Old} {Problems} and {Possible} {Solutions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a62/}
}
TY - JOUR AU - Marija Dimitrijević AU - Larisa Jonke AU - Anna Pachoł TI - Gauge Theory on Twisted $\kappa$-Minkowski: Old Problems and Possible Solutions JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a62/ LA - en ID - SIGMA_2014_10_a62 ER -
%0 Journal Article %A Marija Dimitrijević %A Larisa Jonke %A Anna Pachoł %T Gauge Theory on Twisted $\kappa$-Minkowski: Old Problems and Possible Solutions %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a62/ %G en %F SIGMA_2014_10_a62
Marija Dimitrijević; Larisa Jonke; Anna Pachoł. Gauge Theory on Twisted $\kappa$-Minkowski: Old Problems and Possible Solutions. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a62/
[1] Agostini A., Amelino-Camelia G., Arzano M., D'Andrea F., Action functional for kappa-Minkowski noncommutative spacetime, arXiv: hep-th/0407227
[2] Aschieri P., Castellani L., “Noncommutative {$D=4$} gravity coupled to fermions”, J. High Energy Phys., 2009:6 (2009), 086, 18 pp., arXiv: 0902.3817 | DOI | MR
[3] Aschieri P., Castellani L., “Noncommutative gravity coupled to fermions: second order expansion via {S}eiberg–{W}itten map”, J. High Energy Phys., 2012:7 (2012), 184, 27 pp., arXiv: 1111.4822 | DOI | MR
[4] Aschieri P., Castellani L., “Noncommutative gauge fields coupled to noncommutative gravity”, Gen. Relativity Gravitation, 45 (2013), 581–598, arXiv: 1205.1911 | DOI | MR | Zbl
[5] Aschieri P., Dimitrijević M., Meyer F., Wess J., “Noncommutative geometry and gravity”, Classical Quantum Gravity, 23 (2006), 1883–1911, arXiv: hep-th/0510059 | DOI | MR | Zbl
[6] Ballesteros Á., Bruno N. R., Herranz F. J., “A non-commutative {M}inkowskian spacetime from a quantum {A}d{S} algebra”, Phys. Lett. B, 574 (2003), 276–282, arXiv: hep-th/0306089 | DOI | MR | Zbl
[7] Ballesteros Á., Herranz F. J., Bruno N. R., “Quantum (anti)de Sitter algebras and generalizations of the kappa-Minkowski space”, Proceedings of 11th International Conference on Symmetry Methods in Physics (June 21–24, 2004, Prague), eds. C. Burdik, O. Navratil, S. Posta, Joint Institute for Nuclear Research, Dubna, 2004, 1–20, arXiv: hep-th/0409295 | MR
[8] Beggs E. J., Majid S., “Quantization by cochain twists and nonassociative differentials”, J. Math. Phys., 51 (2010), 053522, 32 pp., arXiv: math.QA/0506450 | DOI | MR
[9] Borowiec A., Lukierski J., Pachoł A., Twisting and $\kappa$-Poincaré, arXiv: 1312.7807
[10] Borowiec A., Pachoł A., “$\kappa$-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D, 79 (2009), 045012, 11 pp., arXiv: 0812.0576 | DOI
[11] Bu J.-G., Kim H.-C., Lee Y., Vac C. H., Yee J. H., “{$\kappa$}-deformed spacetime from twist”, Phys. Lett. B, 665 (2008), 95–99, arXiv: hep-th/0611175 | DOI | MR
[12] Burić M., Latas D., Radovanović V., Trampetić J., “Chiral fermions in noncommutative electrodynamics: renormalizability and dispersion”, Phys. Rev. D, 83 (2011), 045023, 10 pp., arXiv: 1009.4603 | DOI
[13] Chatzistavrakidis A., Jonke L., “Matrix theory origins of non-geometric fluxes”, J. High Energy Phys., 2013:2 (2013), 040, 34 pp., arXiv: 1207.6412 | DOI | MR
[14] Connes A., Douglas M. R., Schwarz A., “Noncommutative geometry and matrix theory: compactification on tori”, J. High Energy Phys., 1998:2 (1998), 003, 35 pp., arXiv: hep-th/9711162 | DOI | MR
[15] Daszkiewicz M., Lukierski J., Woronowicz M., “{$\kappa$}-deformed oscillators, the choice of star product and free {$\kappa$}-deformed quantum fields”, J. Phys. A: Math. Theor., 42 (2009), 355201, 18 pp., arXiv: 0807.1992 | DOI | MR | Zbl
[16] Dimitrijević M., Jonke L., “A twisted look on kappa-{M}inkowski: ${\rm U}(1)$ gauge theory”, J. High Energy Phys., 2011:12 (2011), 080, 23 pp., arXiv: 1107.3475 | DOI | MR
[17] Dimitrijević M., Jonke L., “Gauge theory on kappa-Minkowski revisited: the twist approach”, J. Phys. Conf. Ser., 343 (2012), 012049, 14 pp., arXiv: 1110.6767 | DOI
[18] Dimitrijević M., Jonke L., Möller L., “{${\rm U}(1)$} gauge field theory on {$\kappa$}-{M}inkowski space”, J. High Energy Phys., 2005:9 (2005), 068, 15 pp., arXiv: hep-th/0504129 | DOI | MR
[19] Dimitrijević M., Jonke L., Möller L., Tsouchnika E., Wess J., Wohlgenannt M., “Deformed field theory on {$\kappa$}-spacetime”, Eur. Phys. J. C Part. Fields, 31 (2003), 129–138, arXiv: hep-th/0307149 | DOI | MR | Zbl
[20] Dimitrijević M., Meyer F., Möller L., Wess J., “Gauge theories on the {$\kappa$}-{M}inkowski spacetime”, Eur. Phys. J. C Part. Fields, 36 (2004), 117–126, arXiv: hep-th/0310116 | DOI | MR | Zbl
[21] Drinfel'd V. G., “On constant quasiclassical solutions of the Yang–Baxter equations”, Soviet Math. Dokl., 28 (1983), 667–671
[22] Drinfel'd V. G., “Quasi-{H}opf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR
[23] Felder G., Shoikhet B., “Deformation quantization with traces”, Lett. Math. Phys., 53 (2000), 75–86, arXiv: math.QA/0002057 | DOI | MR | Zbl
[24] Gerstenhaber M., Giaquinto A., Schack S. D., “Quantum symmetry”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 9–46 | DOI | MR
[25] Giaquinto A., Zhang J. J., “Bialgebra actions, twists, and universal deformation formulas”, J. Pure Appl. Algebra, 128 (1998), 133–151, arXiv: hep-th/9411140 | DOI | MR | Zbl
[26] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Twisted statistics in {$\kappa$}-{M}inkowski spacetime”, Phys. Rev. D, 77 (2008), 105010, 6 pp., arXiv: 0802.1576 | DOI | MR
[27] Hoppe J., Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, Ph.D. Thesis, Massachusetts Institute of Technology, 1982
[28] Hoppe J., Membranes and matrix models, arXiv: hep-th/0206192
[29] Jambor C., Sykora A., Realization of algebras with the help of star-products, arXiv: hep-th/0405268
[30] Jurčo B., Möller L., Schraml S., Schupp P., Wess J., “Construction of non-abelian gauge theories on noncommutative spaces”, Eur. Phys. J. C Part. Fields, 21 (2001), 383–388, arXiv: hep-th/0104153 | DOI | MR | Zbl
[31] Jurčo B., Schraml S., Schupp P., Wess J., “Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces”, Eur. Phys. J. C Part. Fields, 17 (2000), 521–526, arXiv: hep-th/0006246 | DOI | MR | Zbl
[32] Jurić T., Kovačević D., Meljanac S., $\kappa$-deformed phase space, Hopf algebroid and twisting, arXiv: 1402.0397
[33] Jurić T., Meljanac S., Štrajn R., “Differential forms and $\kappa$-Minkowski spacetime from extended twist”, Eur. Phys. J. C, 73 (2013), 2472, 8 pp., arXiv: 1211.6612 | DOI | MR
[34] Kim H.-C., Lee Y., Rim C., Yee J. H., “Differential structure on the {$\kappa$}-{M}inkowski spacetime from twist”, Phys. Lett. B, 671 (2009), 398–401, arXiv: 0808.2866 | DOI | MR
[35] Kowalski-Glikman J., “Introduction to doubly special relativity”, Planck Scale Effects in Astrophysics and Cosmology, Lecture Notes in Phys., 669, Springer, Berlin, 2005, 131–159, arXiv: hep-th/0405273 | DOI
[36] Lu J.-H., “Hopf algebroids and quantum groupoids”, Internat. J. Math., 7 (1996), 47–70, arXiv: q-alg/9505024 | DOI | MR | Zbl
[37] Lukierski J., Nowicki A., Ruegg H., “New quantum {P}oincaré algebra and {$\kappa$}-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI | MR | Zbl
[38] Lukierski J., Ruegg H., Nowicki A., Tolstoy V. N., “{$q$}-deformation of {P}oincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR
[39] Madore J., “The fuzzy sphere”, Classical Quantum Gravity, 9 (1992), 69–87 | DOI | MR | Zbl
[40] Madore J., An introduction to noncommutative differential geometry and its physical applications, London Mathematical Society Lecture Note Series, 257, 2nd ed., Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[41] Meljanac S., Krešić-Jurić S., “Differential structure on {$\kappa$}-{M}inkowski space, and {$\kappa$}-{P}oincaré algebra”, Internat. J. Modern Phys. A, 26 (2011), 3385–3402, arXiv: 1004.4647 | DOI | MR | Zbl
[42] Meljanac S., Samsarov A., Trampetić J., Wohlgenannt M., “Scalar field propagation in the $\phi^4$ $\kappa$-Minkowski model”, J. High Energy Phys., 2011:12 (2011), 010, 23 pp., arXiv: 1111.5553 | DOI | MR
[43] Möller L., “Second order expansion of action functionals of noncommutative gauge theories”, J. High Energy Phys., 2004:10 (2004), 063, 20 pp., arXiv: hep-th/0409085 | DOI | MR
[44] Mylonas D., Schupp P., Szabo R. J., Nonassociative geometry and twist deformations in non-geometric string theory, PoS Proc. Sci., ICMP 2013_007, 2014, 28 pp., arXiv: 1402.7306
[45] Ogievetsky O., “Hopf structures on the {B}orel subalgebra of {${\rm sl}(2)$}”, Rend. Circ. Mat. Palermo (2) Suppl., 1994, 185–199 | MR | Zbl
[46] Ohn C., “A {$*$}-product on {${\rm SL}(2)$} and the corresponding nonstandard quantum-{${\rm U}({\mathfrak{sl}}(2))$}”, Lett. Math. Phys., 25 (1992), 85–88 | DOI | MR | Zbl
[47] Schenkel A., Noncommutative gravity and quantum field theory on noncommutative curved spacetimes, Ph.D. Thesis, University of Würzburg, 2011, arXiv: 1210.1115
[48] Schenkel A., Uhlemann C. F., “Field theory on curved noncommutative spacetimes”, SIGMA, 6 (2010), 061, 19 pp., arXiv: 1003.3190 | DOI | MR | Zbl
[49] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR
[50] Sitarz A., “Noncommutative differential calculus on the {$\kappa$}-{M}inkowski space”, Phys. Lett. B, 349 (1995), 42–48, arXiv: hep-th/9409014 | DOI | MR
[51] Steinacker H., Noncommutative geometry and matrix models, PoS Proc. Sci., QGQGS 2011_004, 2011, 27 pp., arXiv: 1109.5521
[52] Tolstoy V. N., Twisted quantum deformations of Lorentz and Poincaré algebras, arXiv: 0712.3962
[53] Ülker K., Yapı{ş}kan B., “Seiberg–{W}itten maps to all orders”, Phys. Rev. D, 77 (2008), 065006, 9 pp., arXiv: 0712.0506 | DOI | MR
[54] Xu P., “Quantum groupoids”, Comm. Math. Phys., 216 (2001), 539–581, arXiv: math.QA/9905192 | DOI | MR | Zbl