@article{SIGMA_2014_10_a61,
author = {Francesco D'Andrea and Fedele Lizzi and Pierre Martinetti},
title = {Deformations of the {Canonical} {Commutation} {Relations} and {Metric} {Structures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a61/}
}
TY - JOUR AU - Francesco D'Andrea AU - Fedele Lizzi AU - Pierre Martinetti TI - Deformations of the Canonical Commutation Relations and Metric Structures JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a61/ LA - en ID - SIGMA_2014_10_a61 ER -
%0 Journal Article %A Francesco D'Andrea %A Fedele Lizzi %A Pierre Martinetti %T Deformations of the Canonical Commutation Relations and Metric Structures %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a61/ %G en %F SIGMA_2014_10_a61
Francesco D'Andrea; Fedele Lizzi; Pierre Martinetti. Deformations of the Canonical Commutation Relations and Metric Structures. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a61/
[1] Amati D., Ciafaloni M., Veneziano G., Can spacetime be probed below the string size?, Phys. Lett. B, 216 (1989), 41–47 | DOI | MR
[2] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., “The principle of relative locality”, Phys. Rev. D, 84 (2011), 084010, 13 pp., arXiv: 1101.0931 | DOI
[3] Amelino-Camelia G., Lukierski J., Nowicki A., “{$\kappa$}-deformed covariant phase space and quantum-gravity uncertainty relations”, Phys. Atomic Nuclei, 61 (1998), 1811–1815, arXiv: hep-th/9706031 | MR
[4] Ardalan F., Arfaei H., Ghasemkhani M., Sadooghi N., “Gauge invariant cutoff QED”, Phys. Scr., 87 (2013), 035101, 12 pp., arXiv: 1108.3215 | DOI | Zbl
[5] Bronstein M., “Quantum theory of weak gravitational fields”, Gen. Relativity Gravitation, 44 (2012), 267–283 | DOI | MR | Zbl
[6] Cabrelli C. A., Molter U. M., “The {K}antorovich metric for probability measures on the circle”, J. Comput. Appl. Math., 57 (1995), 345–361 | DOI | MR | Zbl
[7] Cagnache E., D'Andrea F., Martinetti P., Wallet J. C., “The spectral distance in the {M}oyal plane”, J. Geom. Phys., 61 (2011), 1881–1897, arXiv: 0912.0906 | DOI | MR | Zbl
[8] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[9] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[10] D'Andrea F., Lizzi F., Martinetti P., “Spectral geometry with a cut-off: topological and metric aspects”, J. Geom. Phys., 82 (2014), 18–45, arXiv: 1305.2605 | DOI | MR
[11] D'Andrea F., Martinetti P., “A view on optimal transport from noncommutative geometry”, SIGMA, 6 (2010), 057, 24 pp., arXiv: 0906.1267 | DOI | MR
[12] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the {P}lanck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl
[13] Fichtmüller M., Lorek A., Wess J., “{$q$}-deformed phase space and its lattice structure”, Z. Phys. C, 71 (1996), 533–537, arXiv: hep-th/9511106 | DOI | MR
[14] Gross D. J., Mende P. F., “String theory beyond the {P}lanck scale”, Nuclear Phys. B, 303 (1988), 407–454 | DOI | MR
[15] Kac V., Cheung P., Quantum calculus, Universitext, Springer-Verlag, New York, 2002 | DOI | MR
[16] Kadison R. V., Liu Z., “The Heisenberg relation — mathematical formulations”, SIGMA, 10 (2014), 009, 40 pp., arXiv: 1401.6507 | DOI | Zbl
[17] Kempf A., Mangano G., “Minimal length uncertainty relation and ultraviolet regularisation”, Phys. Rev. D, 55 (1997), 7909–7920, arXiv: hep-th/9612084 | DOI | MR
[18] Kempf A., Mangano G., Mann R. B., “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52 (1995), 1108–1118, arXiv: hep-th/9412167 | DOI | MR
[19] Koornwinder T. H., $q$-Special functions, an overview, arXiv: math.CA/0511148
[20] Lizzi F., Vitale P., “Gauge and {P}oincaré invariant regularization and {H}opf symmetries”, Modern Phys. Lett. A, 27 (2012), 1250097, 15 pp., arXiv: 1202.1190 | DOI | MR | Zbl
[21] Martinetti P., “Carnot–{C}arathéodory metric and gauge fluctuation in noncommutative geometry”, Comm. Math. Phys., 265 (2006), 585–616, arXiv: hep-th/0506147 | DOI | MR | Zbl
[22] Martinetti P., “Spectral distance on the circle”, J. Funct. Anal., 255 (2008), 1575–1612, arXiv: math.OA/0703586 | DOI | MR | Zbl
[23] Martinetti P., Mercati F., Tomassini L., “Minimal length in quantum space and integrations of the line element in noncommutative geometry”, Rev. Math. Phys., 24 (2012), 1250010, 36 pp., arXiv: 1106.0261 | DOI | MR | Zbl
[24] Martinetti P., Tomassini L., Length and distance on a quantum space, PoS Proc. Sci., CORFU 2011_042, 2011, 30 pp., arXiv: 1205.2908
[25] Martinetti P., Tomassini L., “Noncommutative geometry of the {M}oyal plane: translation isometries, {C}onnes' distance on coherent states, {P}ythagoras equality”, Comm. Math. Phys., 323 (2013), 107–141, arXiv: 1110.6164 | DOI | MR | Zbl
[26] Piacitelli G., “Quantum spacetime: a disambiguation”, SIGMA, 6 (2010), 073, 43 pp., arXiv: 1004.5261 | DOI | MR | Zbl
[27] Rabin J., Delon J., Gousseau Y., “Transportation distances on the circle”, J. Math. Imaging Vision, 41 (2011), 147–167, arXiv: 0906.5499 | DOI | MR | Zbl
[28] Rennie A., Varilly J. C., Reconstruction of manifolds in noncommutative geometry, arXiv: math.OA/0610418
[29] Rieffel M. A., “Metrics on states from actions of compact groups”, Doc. Math., 3 (1998), 215–229, arXiv: math.OA/9807084 | MR
[30] Rieffel M. A., “Metrics on state spaces”, Doc. Math., 4 (1999), 559–600, arXiv: math.OA/9906151 | MR | Zbl
[31] Rieffel M. A., “Standard deviation is a strongly {L}eibniz seminorm”, New York J. Math., 20 (2014), 35–56, arXiv: 1208.4072 | MR | Zbl
[32] Rovelli C., Smolin L., “Discreteness of area and volume in quantum gravity”, Nuclear Phys. B, 442 (1995), 593–619, arXiv: gr-qc/9411005 | DOI | MR | Zbl
[33] Voigt C., “Bornological quantum groups”, Pacific J. Math., 235 (2008), 93–135, arXiv: math.QA/0511195 | DOI | MR | Zbl