Deformations of the Canonical Commutation Relations and Metric Structures
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using Connes distance formula in noncommutative geometry, it is possible to retrieve the Euclidean distance from the canonical commutation relations of quantum mechanics. In this note, we study modifications of the distance induced by a deformation of the position-momentum commutation relations. We first consider the deformation coming from a cut-off in momentum space, then the one obtained by replacing the usual derivative on the real line with the $h$- and $q$-derivatives, respectively. In these various examples, some points turn out to be at infinite distance. We then show (on both the real line and the circle) how to approximate points by extended distributions that remain at finite distance. On the circle, this provides an explicit example of computation of the Wasserstein distance.
Keywords: noncommutative geometry; Heisenberg relations; spectral distance.
@article{SIGMA_2014_10_a61,
     author = {Francesco D'Andrea and Fedele Lizzi and Pierre Martinetti},
     title = {Deformations of the {Canonical} {Commutation} {Relations} and {Metric} {Structures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a61/}
}
TY  - JOUR
AU  - Francesco D'Andrea
AU  - Fedele Lizzi
AU  - Pierre Martinetti
TI  - Deformations of the Canonical Commutation Relations and Metric Structures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a61/
LA  - en
ID  - SIGMA_2014_10_a61
ER  - 
%0 Journal Article
%A Francesco D'Andrea
%A Fedele Lizzi
%A Pierre Martinetti
%T Deformations of the Canonical Commutation Relations and Metric Structures
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a61/
%G en
%F SIGMA_2014_10_a61
Francesco D'Andrea; Fedele Lizzi; Pierre Martinetti. Deformations of the Canonical Commutation Relations and Metric Structures. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a61/

[1] Amati D., Ciafaloni M., Veneziano G., Can spacetime be probed below the string size?, Phys. Lett. B, 216 (1989), 41–47 | DOI | MR

[2] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., “The principle of relative locality”, Phys. Rev. D, 84 (2011), 084010, 13 pp., arXiv: 1101.0931 | DOI

[3] Amelino-Camelia G., Lukierski J., Nowicki A., “{$\kappa$}-deformed covariant phase space and quantum-gravity uncertainty relations”, Phys. Atomic Nuclei, 61 (1998), 1811–1815, arXiv: hep-th/9706031 | MR

[4] Ardalan F., Arfaei H., Ghasemkhani M., Sadooghi N., “Gauge invariant cutoff QED”, Phys. Scr., 87 (2013), 035101, 12 pp., arXiv: 1108.3215 | DOI | Zbl

[5] Bronstein M., “Quantum theory of weak gravitational fields”, Gen. Relativity Gravitation, 44 (2012), 267–283 | DOI | MR | Zbl

[6] Cabrelli C. A., Molter U. M., “The {K}antorovich metric for probability measures on the circle”, J. Comput. Appl. Math., 57 (1995), 345–361 | DOI | MR | Zbl

[7] Cagnache E., D'Andrea F., Martinetti P., Wallet J. C., “The spectral distance in the {M}oyal plane”, J. Geom. Phys., 61 (2011), 1881–1897, arXiv: 0912.0906 | DOI | MR | Zbl

[8] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[9] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[10] D'Andrea F., Lizzi F., Martinetti P., “Spectral geometry with a cut-off: topological and metric aspects”, J. Geom. Phys., 82 (2014), 18–45, arXiv: 1305.2605 | DOI | MR

[11] D'Andrea F., Martinetti P., “A view on optimal transport from noncommutative geometry”, SIGMA, 6 (2010), 057, 24 pp., arXiv: 0906.1267 | DOI | MR

[12] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the {P}lanck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl

[13] Fichtmüller M., Lorek A., Wess J., “{$q$}-deformed phase space and its lattice structure”, Z. Phys. C, 71 (1996), 533–537, arXiv: hep-th/9511106 | DOI | MR

[14] Gross D. J., Mende P. F., “String theory beyond the {P}lanck scale”, Nuclear Phys. B, 303 (1988), 407–454 | DOI | MR

[15] Kac V., Cheung P., Quantum calculus, Universitext, Springer-Verlag, New York, 2002 | DOI | MR

[16] Kadison R. V., Liu Z., “The Heisenberg relation — mathematical formulations”, SIGMA, 10 (2014), 009, 40 pp., arXiv: 1401.6507 | DOI | Zbl

[17] Kempf A., Mangano G., “Minimal length uncertainty relation and ultraviolet regularisation”, Phys. Rev. D, 55 (1997), 7909–7920, arXiv: hep-th/9612084 | DOI | MR

[18] Kempf A., Mangano G., Mann R. B., “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52 (1995), 1108–1118, arXiv: hep-th/9412167 | DOI | MR

[19] Koornwinder T. H., $q$-Special functions, an overview, arXiv: math.CA/0511148

[20] Lizzi F., Vitale P., “Gauge and {P}oincaré invariant regularization and {H}opf symmetries”, Modern Phys. Lett. A, 27 (2012), 1250097, 15 pp., arXiv: 1202.1190 | DOI | MR | Zbl

[21] Martinetti P., “Carnot–{C}arathéodory metric and gauge fluctuation in noncommutative geometry”, Comm. Math. Phys., 265 (2006), 585–616, arXiv: hep-th/0506147 | DOI | MR | Zbl

[22] Martinetti P., “Spectral distance on the circle”, J. Funct. Anal., 255 (2008), 1575–1612, arXiv: math.OA/0703586 | DOI | MR | Zbl

[23] Martinetti P., Mercati F., Tomassini L., “Minimal length in quantum space and integrations of the line element in noncommutative geometry”, Rev. Math. Phys., 24 (2012), 1250010, 36 pp., arXiv: 1106.0261 | DOI | MR | Zbl

[24] Martinetti P., Tomassini L., Length and distance on a quantum space, PoS Proc. Sci., CORFU 2011_042, 2011, 30 pp., arXiv: 1205.2908

[25] Martinetti P., Tomassini L., “Noncommutative geometry of the {M}oyal plane: translation isometries, {C}onnes' distance on coherent states, {P}ythagoras equality”, Comm. Math. Phys., 323 (2013), 107–141, arXiv: 1110.6164 | DOI | MR | Zbl

[26] Piacitelli G., “Quantum spacetime: a disambiguation”, SIGMA, 6 (2010), 073, 43 pp., arXiv: 1004.5261 | DOI | MR | Zbl

[27] Rabin J., Delon J., Gousseau Y., “Transportation distances on the circle”, J. Math. Imaging Vision, 41 (2011), 147–167, arXiv: 0906.5499 | DOI | MR | Zbl

[28] Rennie A., Varilly J. C., Reconstruction of manifolds in noncommutative geometry, arXiv: math.OA/0610418

[29] Rieffel M. A., “Metrics on states from actions of compact groups”, Doc. Math., 3 (1998), 215–229, arXiv: math.OA/9807084 | MR

[30] Rieffel M. A., “Metrics on state spaces”, Doc. Math., 4 (1999), 559–600, arXiv: math.OA/9906151 | MR | Zbl

[31] Rieffel M. A., “Standard deviation is a strongly {L}eibniz seminorm”, New York J. Math., 20 (2014), 35–56, arXiv: 1208.4072 | MR | Zbl

[32] Rovelli C., Smolin L., “Discreteness of area and volume in quantum gravity”, Nuclear Phys. B, 442 (1995), 593–619, arXiv: gr-qc/9411005 | DOI | MR | Zbl

[33] Voigt C., “Bornological quantum groups”, Pacific J. Math., 235 (2008), 93–135, arXiv: math.QA/0511195 | DOI | MR | Zbl