@article{SIGMA_2014_10_a60,
author = {John Armstrong and Simon Salamon},
title = {Twistor {Topology} of the {Fermat} {Cubic}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a60/}
}
John Armstrong; Simon Salamon. Twistor Topology of the Fermat Cubic. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a60/
[1] Armstrong J., Povero M., Salamon S., “Twistor lines on cubic surfaces”, Rend. Semin. Mat. Univ. Politec. Torino (to appear) , arXiv: 1212.2851
[2] Atiyah M. F., Geometry of {Y}ang–{M}ills fields, Scuola Normale Superiore Pisa, Pisa, 1979 | MR | Zbl
[3] Cayley A., “On the triple tangent planes of surfaces of the third order”, Cambridge and Dublin Math. J., 4 (1849), 118–138
[4] Pontecorvo M., “Uniformization of conformally flat {H}ermitian surfaces”, Differential Geom. Appl., 2 (1992), 295–305 | DOI | MR | Zbl
[5] Povero M., Modelling {Kä}hler manifolds and projective surfaces, Ph.D. Thesis, Politecnico di Torino, Italy, 2009
[6] Salamon S., Viaclovsky J., “Orthogonal complex structures on domains in {${\mathbb R}^4$}”, Math. Ann., 343 (2009), 853–899, arXiv: 0704.3422v1 | DOI | MR | Zbl
[7] Schläfli L., “On the distribution of surfaces of the third order into species, in reference to the absence or presence of singular points, and the reality of their lines”, Philos. Trans. Roy. Soc. London, 153 (1863), 193–241 | DOI