Twistor Topology of the Fermat Cubic
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe topologically the discriminant locus of a smooth cubic surface in the complex projective space ${\mathbb{CP}}^3$ that contains $5$ fibres of the projection ${\mathbb{CP}}^3 \longrightarrow S^4$.
Keywords: discriminant locus; Fermat cubic; twistor fibration.
@article{SIGMA_2014_10_a60,
     author = {John Armstrong and Simon Salamon},
     title = {Twistor {Topology} of the {Fermat} {Cubic}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a60/}
}
TY  - JOUR
AU  - John Armstrong
AU  - Simon Salamon
TI  - Twistor Topology of the Fermat Cubic
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a60/
LA  - en
ID  - SIGMA_2014_10_a60
ER  - 
%0 Journal Article
%A John Armstrong
%A Simon Salamon
%T Twistor Topology of the Fermat Cubic
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a60/
%G en
%F SIGMA_2014_10_a60
John Armstrong; Simon Salamon. Twistor Topology of the Fermat Cubic. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a60/

[1] Armstrong J., Povero M., Salamon S., “Twistor lines on cubic surfaces”, Rend. Semin. Mat. Univ. Politec. Torino (to appear) , arXiv: 1212.2851

[2] Atiyah M. F., Geometry of {Y}ang–{M}ills fields, Scuola Normale Superiore Pisa, Pisa, 1979 | MR | Zbl

[3] Cayley A., “On the triple tangent planes of surfaces of the third order”, Cambridge and Dublin Math. J., 4 (1849), 118–138

[4] Pontecorvo M., “Uniformization of conformally flat {H}ermitian surfaces”, Differential Geom. Appl., 2 (1992), 295–305 | DOI | MR | Zbl

[5] Povero M., Modelling {Kä}hler manifolds and projective surfaces, Ph.D. Thesis, Politecnico di Torino, Italy, 2009

[6] Salamon S., Viaclovsky J., “Orthogonal complex structures on domains in {${\mathbb R}^4$}”, Math. Ann., 343 (2009), 853–899, arXiv: 0704.3422v1 | DOI | MR | Zbl

[7] Schläfli L., “On the distribution of surfaces of the third order into species, in reference to the absence or presence of singular points, and the reality of their lines”, Philos. Trans. Roy. Soc. London, 153 (1863), 193–241 | DOI