The $(n,1)$-Reduced DKP Hierarchy, the String Equation and $W$ Constraints
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The total descendent potential of a simple singularity satisfies the Kac–Wakimoto principal hierarchy. Bakalov and Milanov showed recently that it is also a highest weight vector for the corresponding $W$-algebra. This was used by Liu, Yang and Zhang to prove its uniqueness. We construct this principal hierarchy of type $D$ in a different way, viz.as a reduction of some DKP hierarchy. This gives a Lax type and a Grassmannian formulation of this hierarchy. We show in particular that the string equation induces a large part of the $W$ constraints of Bakalov and Milanov. These constraints are not only given on the tau function, but also in terms of the Lax and Orlov–Schulman operators.
Keywords: affine Kac–Moody algebra; loop group orbit; Kac–Wakimoto hierarchy; isotropic Grassmannian; total descendent potential; $W$ constraints.
@article{SIGMA_2014_10_a6,
     author = {Johan van de Leur},
     title = {The $(n,1)${-Reduced} {DKP} {Hierarchy,} the {String} {Equation} and $W${~Constraints}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a6/}
}
TY  - JOUR
AU  - Johan van de Leur
TI  - The $(n,1)$-Reduced DKP Hierarchy, the String Equation and $W$ Constraints
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a6/
LA  - en
ID  - SIGMA_2014_10_a6
ER  - 
%0 Journal Article
%A Johan van de Leur
%T The $(n,1)$-Reduced DKP Hierarchy, the String Equation and $W$ Constraints
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a6/
%G en
%F SIGMA_2014_10_a6
Johan van de Leur. The $(n,1)$-Reduced DKP Hierarchy, the String Equation and $W$ Constraints. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a6/

[1] Bakalov B., Kac V. G., “Twisted modules over lattice vertex algebras”, Lie theory and its Applications in Physics {V}, World Sci. Publ., River Edge, NJ, 2004, 3–26, arXiv: math.QA/0402315 | DOI | MR

[2] Bakalov B., Milanov T., “$\mathcal W$-constraints for the total descendant potential of a simple singularity”, Compos. Math., 149 (2013), 840–888, arXiv: 1203.3414 | DOI | MR | Zbl

[3] Date E., Jimbo M., Kashiwara M., Miwa T., “Solitons, {$\tau $} functions and {E}uclidean {L}ie algebras”, Mathematics and Physics ({P}aris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 261–279 | MR

[4] Delduc F., Fehér L., “Regular conjugacy classes in the {W}eyl group and integrable hierarchies”, J. Phys. A: Math. Gen., 28 (1995), 5843–5882, arXiv: hep-th/9410203 | DOI | MR | Zbl

[5] Drinfel'd V. G., Sokolov V. V., “Lie algebras and equations of {K}orteweg-de {V}ries type”, Current Problems in Mathematics, Itogi Nauki i Tekhniki, 24, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., M., 1984, 81–180 | MR

[6] Frenkel E., Givental A., Milanov T., “Soliton equations, vertex operators, and simple singularities”, Funct. Anal. Other Math., 3 (2010), 47–63, arXiv: 0909.4032 | DOI | MR | Zbl

[7] Fukuma M., Kawai H., Nakayama R., “Infinite-dimensional {G}rassmannian structure of two-dimensional quantum gravity”, Comm. Math. Phys., 143 (1992), 371–403 | DOI | MR | Zbl

[8] Givental A., “{$A_{n-1}$} singularities and {$n$}{K}d{V} hierarchies”, Mosc. Math. J., 3 (2003), 475–505, arXiv: math.AG/0209205 | MR | Zbl

[9] Givental A., Milanov T., “Simple singularities and integrable hierarchies”, The breadth of symplectic and {P}oisson geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 173–201, arXiv: math.AG/0307176 | DOI | MR

[10] Jimbo M., Miwa T., “Solitons and infinite-dimensional {L}ie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl

[11] Kac V. G., Infinite-dimensional {L}ie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl

[12] Kac V. G., Kazhdan D. A., Lepowsky J., Wilson R. L., “Realization of the basic representations of the {E}uclidean {L}ie algebras”, Adv. Math., 42 (1981), 83–112 | DOI | MR | Zbl

[13] Kac V. G., Peterson D. H., “$112$ constructions of the basic representation of the loop group of $E_8$”, Symposium on Anomalies, Geometry, Topology ({C}hicago, {I}ll., 1985), World Sci. Publishing, Singapore, 1985, 276–298 | MR

[14] Kac V. G., Schwarz A., “Geometric interpretation of the partition function of {$2$}{D} gravity”, Phys. Lett. B, 257 (1991), 329–334 | DOI | MR

[15] Kac V. G., van de Leur J., “The geometry of spinors and the multicomponent {BKP} and {DKP} hierarchies”, The Bispectral Problem ({M}ontreal, {PQ}, 1997), CRM Proc. Lecture Notes, 14, Amer. Math. Soc., Providence, RI, 1998, 159–202 | MR | Zbl

[16] Kac V. G., van de Leur J., “The {$n$}-component {KP} hierarchy and representation theory”, J. Math. Phys., 44 (2003), 3245–3293, arXiv: hep-th/9308137 | DOI | MR | Zbl

[17] Kac V. G., Wakimoto M., “Exceptional hierarchies of soliton equations”, Theta Functions — {B}owdoin 1987, {P}art 1 ({B}runswick, {ME}, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 191–237 | DOI | MR

[18] Kac V. G., Wang W., Yan C. H., “Quasifinite representations of classical {L}ie subalgebras of {${\mathcal W}_{1+\infty}$}”, Adv. Math., 139 (1998), 56–140, arXiv: math.QA/9801136 | DOI | MR | Zbl

[19] Liu S.-Q., Wu C.-Z., Zhang Y., “On the {D}rinfeld–{S}okolov hierarchies of {$D$} type”, Int. Math. Res. Not., 2011 (2011), 1952–1996, arXiv: 0912.5273 | DOI | MR | Zbl

[20] Liu S.-Q., Yang D., Zhang Y., “Uniqueness theorem of {$\mathcal{W}$}-constraints for simple singularities”, Lett. Math. Phys., 103 (2013), 1329–1345, arXiv: 1305.2593 | DOI | MR | Zbl

[21] ten Kroode F., van de Leur J., “Bosonic and fermionic realizations of the affine algebra {$\widehat{\rm so}_{2n}$}”, Comm. Algebra, 20 (1992), 3119–3162 | DOI | MR | Zbl

[22] Vakulenko V. I., “Solution of {V}irasoro conditions for the {DKP}-hierarchy”, Theoret. and Math. Phys., 107 (1996), 435–440 | DOI | MR | Zbl

[23] van de Leur J., “The {A}dler–{S}hiota–van {M}oerbeke formula for the {BKP} hierarchy”, J. Math. Phys., 36 (1995), 4940–4951, arXiv: hep-th/9411159 | DOI | MR | Zbl

[24] van de Leur J., “The {$n$}th reduced {BKP} hierarchy, the string equation and {$BW_{1+\infty}$}-constraints”, Acta Appl. Math., 44 (1996), 185–206, arXiv: hep-th/9411067 | DOI | MR | Zbl

[25] Wu C.-Z., “A remark on {K}ac–{W}akimoto hierarchies of {D}-type”, J. Phys. A: Math. Theor., 43 (2010), 035201, 8 pp., arXiv: 0906.5360 | DOI | MR | Zbl

[26] Wu C.-Z., From additional symmetries to linearization of {V}irasoro symmetries, Phys. D, 249 (2013), 25–37, arXiv: 1112.0246 | DOI | MR