@article{SIGMA_2014_10_a59,
author = {Paul F. Baum and Piotr M. Hajac},
title = {Local {Proof} of {Algebraic} {Characterization} of {Free} {Actions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a59/}
}
Paul F. Baum; Piotr M. Hajac. Local Proof of Algebraic Characterization of Free Actions. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a59/
[1] Baum P. F., De Commer K., Hajac P. M., Free actions of compact quantum groups on unital $C^{*}$-algebras, arXiv: 1304.2812
[2] Baum P. F., Hajac P. M., Matthes R., Szymański W., “Noncommutative geometry approach to principal and associated bundles”, Quantum Symmetry in Noncommutative Geometry (to appear) , arXiv: math.DG/0701033
[3] Brzeziński T., Hajac P. M., “The {C}hern–{G}alois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl
[4] Gleason A. M., “Spaces with a compact {L}ie group of transformations”, Proc. Amer. Math. Soc., 1 (1950), 35–43 | DOI | MR | Zbl
[5] Hajac P. M., Krähmer U., Matthes R., Zieliński B., “Piecewise principal comodule algebras”, J. Noncommut. Geom., 5 (2011), 591–614, arXiv: 0707.1344 | DOI | MR | Zbl
[6] Loomis L. H., An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto–New York–London, 1953 | MR | Zbl
[7] Mostow G. D., “Cohomology of topological groups and solvmanifolds”, Ann. of Math., 73 (1961), 20–48 | DOI | MR | Zbl
[8] Podleś P., “Symmetries of quantum spaces. {S}ubgroups and quotient spaces of quantum {${\rm SU}(2)$} and {${\rm SO}(3)$} groups”, Comm. Math. Phys., 170 (1995), 1–20, arXiv: hep-th/9402069 | DOI | MR | Zbl
[9] Schneider H.-J., “Principal homogeneous spaces for arbitrary {H}opf algebras”, Israel J. Math., 72 (1990), 167–195 | DOI | MR | Zbl
[10] Sołtan P. M., “On actions of compact quantum groups”, Illinois J. Math., 55 (2011), 953–962, arXiv: 1003.5526 | MR