Local Proof of Algebraic Characterization of Free Actions
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a compact Hausdorff topological group acting on a compact Hausdorff topological space $X$. Within the $C^{*}$-algebra $C(X)$ of all continuous complex-valued functions on $X$, there is the Peter–Weyl algebra $\mathcal{P}_G(X)$ which is the (purely algebraic) direct sum of the isotypical components for the action of $G$ on $C(X)$. We prove that the action of $G$ on $X$ is free if and only if the canonical map $\mathcal{P}_G(X)\otimes_{C(X/G)}\mathcal{P}_G(X)\to \mathcal{P}_G(X)\otimes\mathcal{O}(G)$ is bijective. Here both tensor products are purely algebraic, and $\mathcal{O}(G)$ denotes the Hopf algebra of “polynomial” functions on $G$.
Keywords: compact group; free action; Peter–Weyl–Galois condition.
@article{SIGMA_2014_10_a59,
     author = {Paul F. Baum and Piotr M. Hajac},
     title = {Local {Proof} of {Algebraic} {Characterization} of {Free} {Actions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a59/}
}
TY  - JOUR
AU  - Paul F. Baum
AU  - Piotr M. Hajac
TI  - Local Proof of Algebraic Characterization of Free Actions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a59/
LA  - en
ID  - SIGMA_2014_10_a59
ER  - 
%0 Journal Article
%A Paul F. Baum
%A Piotr M. Hajac
%T Local Proof of Algebraic Characterization of Free Actions
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a59/
%G en
%F SIGMA_2014_10_a59
Paul F. Baum; Piotr M. Hajac. Local Proof of Algebraic Characterization of Free Actions. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a59/

[1] Baum P. F., De Commer K., Hajac P. M., Free actions of compact quantum groups on unital $C^{*}$-algebras, arXiv: 1304.2812

[2] Baum P. F., Hajac P. M., Matthes R., Szymański W., “Noncommutative geometry approach to principal and associated bundles”, Quantum Symmetry in Noncommutative Geometry (to appear) , arXiv: math.DG/0701033

[3] Brzeziński T., Hajac P. M., “The {C}hern–{G}alois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl

[4] Gleason A. M., “Spaces with a compact {L}ie group of transformations”, Proc. Amer. Math. Soc., 1 (1950), 35–43 | DOI | MR | Zbl

[5] Hajac P. M., Krähmer U., Matthes R., Zieliński B., “Piecewise principal comodule algebras”, J. Noncommut. Geom., 5 (2011), 591–614, arXiv: 0707.1344 | DOI | MR | Zbl

[6] Loomis L. H., An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto–New York–London, 1953 | MR | Zbl

[7] Mostow G. D., “Cohomology of topological groups and solvmanifolds”, Ann. of Math., 73 (1961), 20–48 | DOI | MR | Zbl

[8] Podleś P., “Symmetries of quantum spaces. {S}ubgroups and quotient spaces of quantum {${\rm SU}(2)$} and {${\rm SO}(3)$} groups”, Comm. Math. Phys., 170 (1995), 1–20, arXiv: hep-th/9402069 | DOI | MR | Zbl

[9] Schneider H.-J., “Principal homogeneous spaces for arbitrary {H}opf algebras”, Israel J. Math., 72 (1990), 167–195 | DOI | MR | Zbl

[10] Sołtan P. M., “On actions of compact quantum groups”, Illinois J. Math., 55 (2011), 953–962, arXiv: 1003.5526 | MR