Configurations of an Articulated Arm and Singularities of Special Multi-Flags
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

P. Mormul has classified the singularities of special multi-flags in terms of “EKR class” encoded by sequences $j_1,\dots, j_k$ of integers (see [Singularity Theory Seminar, Warsaw University of Technology, Vol. 8, 2003, 87–100] and [Banach Center Publ., Vol. 65, Polish Acad. Sci., Warsaw, 2004, 157–178]). However, A.L. Castro and R. Montgomery have proposed in [Israel J. Math. 192 (2012), 381–427] a codification of singularities of multi-flags by RC and RVT codes. The main results of this paper describe a decomposition of each “EKR” set of depth $1$ in terms of RVT codes as well as characterize such a set in terms of configurations of an articulated arm. Indeed, an analogue description for some “EKR” sets of depth $2$ is provided. All these results give rise to a complete characterization of all “EKR” sets for $1\leq k\leq 4$.
Keywords: special multi-flags distributions; Cartan prolongation; spherical prolongation; articulated arm; rigid bar.
@article{SIGMA_2014_10_a58,
     author = {Fernand Pelletier and Mayada Slayman},
     title = {Configurations of an {Articulated} {Arm} and {Singularities} of {Special} {Multi-Flags}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a58/}
}
TY  - JOUR
AU  - Fernand Pelletier
AU  - Mayada Slayman
TI  - Configurations of an Articulated Arm and Singularities of Special Multi-Flags
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a58/
LA  - en
ID  - SIGMA_2014_10_a58
ER  - 
%0 Journal Article
%A Fernand Pelletier
%A Mayada Slayman
%T Configurations of an Articulated Arm and Singularities of Special Multi-Flags
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a58/
%G en
%F SIGMA_2014_10_a58
Fernand Pelletier; Mayada Slayman. Configurations of an Articulated Arm and Singularities of Special Multi-Flags. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a58/

[1] Adachi J., “Global stability of distributions of higher corank of derived length one”, Int. Math. Res. Not., 2003 (2003), 2621–2638 | DOI | MR | Zbl

[2] Adachi J., “Global stability of special multi-flags”, Israel J. Math., 179 (2010), 29–56 | DOI | MR | Zbl

[3] Castro A. L., Howard W. C., “A {M}onster {T}ower approach to {G}oursat multi-flags”, Differential Geom. Appl., 30 (2012), 405–427 | DOI | MR | Zbl

[4] Castro A. L., Montgomery R., “Spatial curve singularities and the {M}onster/{S}emple tower”, Israel J. Math., 192 (2012), 381–427 | DOI | MR | Zbl

[5] Kumpera A., Rubin J. L., “Multi-flag systems and ordinary differential equations”, Nagoya Math. J., 166 (2002), 1–27 | MR | Zbl

[6] Li S. J., Respondek W., “The geometry, controllability, and flatness property of the {$n$}-bar system”, Internat. J. Control, 84 (2011), 834–850 | DOI | MR | Zbl

[7] Montgomery R., Zhitomirskii M., “Geometric approach to {G}oursat flags”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 459–493 | DOI | MR | Zbl

[8] Mormul P., “Geometric singularity classes for special $k$-flags, $k \geq 2$, of arbitrary length”, Singularity Theory Seminar, 8, ed. S. Janeczko, Warsaw University of Technology, 2003, 87–100

[9] Mormul P., “Multi-dimensional {C}artan prolongation and special {$k$}-flags”, Geometric Singularity Theory, Banach Center Publ., 65, Polish Acad. Sci., Warsaw, 2004, 157–178 | DOI | MR | Zbl

[10] Mormul P., Pelletier F., Special 2-flags in lengths not exceeding four: a study in strong nilpotency of distributions, arXiv: 1011.1763

[11] Pasillas-Lépine W., Respondek W., “Contact systems and corank one involutive subdistributions”, Acta Appl. Math., 69 (2001), 105–128, arXiv: math.DG/0004124 | DOI | MR | Zbl

[12] Pasillas-Lépine W., Respondek W., “On the geometry of {G}oursat structures”, ESAIM Control Optim. Calc. Var., 6 (2001), 119–181, arXiv: math.DG/9911101 | DOI | MR | Zbl

[13] Pelletier F., “Espace de configuration d'un système mécanique et tours de fibrés associées à un multi-drapeau spécial”, C. R. Math. Acad. Sci. Paris, 350 (2012), 71–76 | DOI | MR | Zbl

[14] Shibuya K., Yamaguchi K., “Drapeau theorem for differential systems”, Differential Geom. Appl., 27 (2009), 793–808 | DOI | MR | Zbl

[15] Slayman M., Bras articulé et distributions multi-drapeaux, Ph.D. Thesis, Université de Savoie, Laboratoire de Mathématiques (LAMA), 2008

[16] Slayman M., Pelletier F., “Articulated arm and special multi-flags”, J. Math. Sci. Adv. Appl., 8 (2011), 9–41, arXiv: 1205.2990 | MR | Zbl