@article{SIGMA_2014_10_a57,
author = {Ghislain Fourier and David Hernandez},
title = {Schur {Positivity} and {Kirillov{\textendash}Reshetikhin} {Modules}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a57/}
}
Ghislain Fourier; David Hernandez. Schur Positivity and Kirillov–Reshetikhin Modules. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a57/
[1] Chari V., “Minimal affinizations of representations of quantum groups: the rank {$2$} case”, Publ. Res. Inst. Math. Sci., 31 (1995), 873–911, arXiv: hep-th/9410022 | DOI | MR | Zbl
[2] Chari V., “On the fermionic formula and the {K}irillov–{R}eshetikhin conjecture”, Int. Math. Res. Not., 2001 (2001), 629–654, arXiv: math.QA/0006090 | DOI | MR | Zbl
[3] Chari V., Fourier G., Khandai T., “A categorical approach to {W}eyl modules”, Transform. Groups, 15 (2010), 517–549, arXiv: 0906.2014 | DOI | MR | Zbl
[4] Chari V., Hernandez D., “Beyond {K}irillov–{R}eshetikhin modules”, Quantum Affine Algebras, Extended Affine {L}ie Algebras, and their Applications, Contemp. Math., 506, Amer. Math. Soc., Providence, RI, 2010, 49–81, arXiv: 0812.1716 | DOI | MR | Zbl
[5] Chari V., Pressley A., J. Algebra, 184 (1996), Minimal affinizations of representations of quantum groups: the simply laced case, arXiv: hep-th/9410036 | DOI | MR
[6] Chari V., Venkatesh R., Demazure modules, fusion products and $Q$-systems, arXiv: 1305.2523
[7] Dobrovolska G., Pylyavskyy P., “On products of {${\mathfrak{sl}}_{\mathfrak{n}}$} characters and support containment”, J. Algebra, 316 (2007), 706–714, arXiv: math.CO/0608134 | DOI | MR | Zbl
[8] Feigin B., Loktev S., “On generalized {K}ostka polynomials and the quantum {V}erlinde rule”, Differential Topology, Infinite-Dimensional {L}ie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 61–79, arXiv: math.QA/9812093 | MR | Zbl
[9] Fourier G., New homogeneous ideals for current algebras: filtrations, fusion products and Pieri rules, arXiv: 1303.4437
[10] Fourier G., “Extended partial order and applications to tensor products”, Australas. J. Combin., 58 (2014), 178–196, arXiv: 1211.2923
[11] Frenkel E., Mukhin E., “Combinatorics of {$q$}-characters of finite-dimensional representations of quantum affine algebras”, Comm. Math. Phys., 216 (2001), 23–57, arXiv: math.QA/9911112 | DOI | MR | Zbl
[12] Frenkel E., Reshetikhin N., “The {$q$}-characters of representations of quantum affine algebras and deformations of {$\mathcal W$}-algebras”, Recent Developments in Quantum Affine Algebras and Related Topics ({R}aleigh, {NC}, 1998), Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 163–205, arXiv: math.QA/9810055 | DOI | MR | Zbl
[13] Hatayama G., Kuniba A., Okado M., Takagi T., Tsuboi Z., “Paths, crystals and fermionic formulae”, Math{P}hys Odyssey, 2001, Prog. Math. Phys., 23, Birkhäuser Boston, Boston, MA, 2002, 205–272, arXiv: math.QA/0102113 | MR | Zbl
[14] Hernandez D., “The {K}irillov–{R}eshetikhin conjecture and solutions of {$T$}-systems”, J. Reine Angew. Math., 596 (2006), 63–87, arXiv: math.QA/0501202 | DOI | MR | Zbl
[15] Kedem R., “A pentagon of identities, graded tensor products, and the {K}irillov–{R}eshetikhin conjecture”, New Trends in Quantum Integrable Systems, World Sci. Publ., Hackensack, NJ, 2011, 173–193, arXiv: 1008.0980 | DOI | MR | Zbl
[16] Lam T., Postnikov A., Pylyavskyy P., “Schur positivity and {S}chur log-concavity”, Amer. J. Math., 129 (2007), 1611–1622, arXiv: math.CO/0502446 | DOI | MR | Zbl
[17] Mukhin E., Young C. A. S., “Extended {$T$}-systems”, Selecta Math. (N.S.), 18 (2012), 591–631, arXiv: 1104.3094 | DOI | MR | Zbl
[18] Nakajima H., “{$t$}-analogs of {$q$}-characters of {K}irillov–{R}eshetikhin modules of quantum affine algebras”, Represent. Theory, 7 (2003), 259–274, arXiv: math.QA/0009231 | DOI | MR | Zbl