Induced Representations and Hypergroupoids
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review various notions of correspondences for locally compact groupoids with Haar systems, in particular a recent definition due to R. D. Holkar. We give the construction of the representations induced by such a correspondence. Finally, we extend the construction of induced representations to hypergroupoids.
Keywords: groupoids; $C^*$-algebras; correspondences; induced representations; hypergroups.
@article{SIGMA_2014_10_a56,
     author = {Jean Renault},
     title = {Induced {Representations} and {Hypergroupoids}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a56/}
}
TY  - JOUR
AU  - Jean Renault
TI  - Induced Representations and Hypergroupoids
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a56/
LA  - en
ID  - SIGMA_2014_10_a56
ER  - 
%0 Journal Article
%A Jean Renault
%T Induced Representations and Hypergroupoids
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a56/
%G en
%F SIGMA_2014_10_a56
Jean Renault. Induced Representations and Hypergroupoids. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a56/

[1] Anantharaman-Delaroche C., Renault J., Amenable groupoids, Monographies de L'Enseignement Mathématique, 36, L'Enseignement Mathématique, Geneva, 2000 | MR

[2] Bloom W. R., Heyer H., Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Mathematics, 20, Walter de Gruyter Co., Berlin, 1995 | DOI | MR

[3] Bourbaki N., Éléments de mathématique. {F}ascicule {XXIX}. {L}ivre {VI}: {I}ntégration. {C}hapitre 7: {M}esure de {H}aar. {C}hapitre 8: {C}onvolution et représentations, Actualités Scientifiques et Industrielles, 1306, Hermann, Paris, 1963 | MR | Zbl

[4] Buneci M., Stachura P., Morphisms of locally compact groupoids endowed with Haar systems, arXiv: math.OA/0511613

[5] Dunkl C. F., “The measure algebra of a locally compact hypergroup”, Trans. Amer. Math. Soc., 179 (1973), 331–348 | DOI | MR | Zbl

[6] Hauenschild W., Kaniuth E., Kumar A., “Harmonic analysis on central hypergroups and induced representations”, Pacific J. Math., 110 (1984), 83–112 | DOI | MR | Zbl

[7] Hermann P., “Induced representations of hypergroups”, Math. Z., 211 (1992), 687–699 | DOI | MR | Zbl

[8] Hermann P., “Representations of double coset hypergroups and induced representations”, Manuscripta Math., 88 (1995), 1–24 | DOI | MR | Zbl

[9] Hilsum M., Skandalis G., “Morphismes {$K$}-orientés d'espaces de feuilles et fonctorialité en théorie de {K}asparov (d'après une conjecture d'{A}. {C}onnes)”, Ann. Sci. École Norm. Sup. (4), 20 (1987), 325–390 | MR | Zbl

[10] Holkar R. D., Topological construction of $C^{\ast}$-correspondences for groupoid $C^{\ast}$-algebras, Ph.D. thesis, in preparation, Göttingen University

[11] Holkar R. D., Renault J., Hypergroupoids and {$C^*$}-algebras,, C. R. Math. Acad. Sci. Paris, 351 (2013), 911–914, arXiv: 1403.3424 | DOI | MR | Zbl

[12] Jewett R. I., “Spaces with an abstract convolution of measures”, Adv. Math., 18 (1975), 1–101 | DOI | MR | Zbl

[13] Kalyuzhnyi A. A., Podkolzin G. B., Chapovsky Yu. A., “Harmonic analysis on a locally compact hypergroup”, Methods Funct. Anal. Topology, 16 (2010), 304–332 | MR | Zbl

[14] Landsman N. P., “Operator algebras and {P}oisson manifolds associated to groupoids”, Comm. Math. Phys., 222 (2001), 97–116 | DOI | MR | Zbl

[15] Macho Stadler M., O'uchi M., “Correspondence of groupoid {$C^\ast$}-algebras”, J. Operator Theory, 42 (1999), 103–119 | MR | Zbl

[16] Mackey G. W., “Induced representations of locally compact groups, I”, Ann. of Math., 55 (1952), 101–139 | DOI | MR | Zbl

[17] Mrčun J., “Functoriality of the bimodule associated to a {H}ilsum–{S}kandalis map”, $K$-Theory, 18 (1999), 235–253 | DOI | MR | Zbl

[18] Muhly P. S., Renault J., Williams D. P., “Equivalence and isomorphism for groupoid {$C^\ast$}-algebras”, J. Operator Theory, 17 (1987), 3–22 | MR | Zbl

[19] Ramsay A., “Topologies on measured groupoids”, J. Funct. Anal., 47 (1982), 314–343 | DOI | MR | Zbl

[20] Ramsay A., “The {M}ackey–{G}limm dichotomy for foliations and other {P}olish groupoids”, J. Funct. Anal., 94 (1990), 358–374 | DOI | MR | Zbl

[21] Renault J., A groupoid approach to {$C^{\ast}$}-algebras, Lecture Notes in Mathematics, 793, Springer, Berlin, 1980 | MR | Zbl

[22] Renault J., Strong Morita equivalence of groupoid $C^*$-algebras, Talk given in the Operator Algebras Section of the Annual Summer Meeting of the Canadian Mathematical Society (Halifax, May 27–30, 1981)

[23] Renault J., “{$C^{\ast} $}-algebras of groupoids and foliations”, Operator Algebras and Applications ({K}ingston, {O}nt., 1980), v. I, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, R.I., 1982, 339–350 | MR

[24] Renault J., “Représentation des produits croisés d'algèbres de groupoïdes”, J. Operator Theory, 18 (1987), 67–97 | MR | Zbl

[25] Renault J., “The ideal structure of groupoid crossed product {$C^\ast$}-algebras”, J. Operator Theory, 25 (1991), 3–36 | MR | Zbl

[26] Rieffel M. A., “Induced representations of {$C^{\ast} $}-algebras”, Adv. Math., 13 (1974), 176–257 | DOI | MR | Zbl

[27] Rieffel M. A., “Applications of strong {M}orita equivalence to transformation group {$C^{\ast}$}-algebras”, Operator Algebras and Applications ({K}ingston, {O}nt., 1980), v. I, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, R.I., 1982, 299–310 | MR

[28] Spector R., “Aperçu de la théorie des hypergroupes”, Analyse harmonique sur les groupes de {L}ie, {S}ém. {N}ancy-{S}trasbourg, 1973–1975, Lecture Notes in Math., 497, Springer, Berlin, 1975, 643–673 | DOI | MR

[29] Tu J.-L., “Non-{H}ausdorff groupoids, proper actions and {$K$}-theory”, Doc. Math., 9 (2004), 565–597, arXiv: math.OA/0403071 | MR | Zbl